

Energy-Efficient Dual-Port 32-word 8-bit ERSFQ Register File

Alex Kirichneko, Max Miller, Igor Vernik, Oleg Mukhanov

HYPRES, United States of America

Lucian Albu, and Gerald Gibson

IBM, United States of America

C3 Program

Cryogenic Computing Complexity Program

- called C3 (not CCCP!)
- 🗆 5 years

To demonstrate fully functional cryogenic computer

64-bit processors
cryogenic RAM
> 2 GHz
< 1 nJ / FLOP

64-bit CPU Block Diagram

64-bit CPU Parameters

	# of JJs	Energy/op	Latency	Delay
ALU	32,000	3.8 fJ	1	35 ps
Register File	160,000	10.2 fJ	2	100 ps
Instruction Memory	72,000	5.4 fJ	3	
Buffer, decoders, memory interface	17,000	1.3 fJ		
Bit Shifter	4,200	3.6 fJ	4	20 ps - 400 ps
Total	281,000	~20-24 fJ		

Clock – 10 GHz

Design of an 8-bit ERSFQ CPU

8-bit CPU on a 5x5-mm chip

8-bit CPU comprises

- 8-bit ALU
- 31x8-bit register file
- 12x21-bit instruction memory
- External serial i/o interfaces to the register file and the instruction memory
- 28,000 JJs (including bias JJs)

8-bit 32-word Register File

Address input block

Register file i/o block

matrix

file

register

8x32

Three 5-bit decoders

Current recycling in the Register File

- Modular design:
 - All 32 registers have exactly the same bias current value
 - Each clock cycle, only three registers are active
- Current recycling:
 - Factor of 32 dc bias current reduction
 - Factor of ~10 power dissipation reduction

Dual-port NDRO cell (ND²)

ND² cell schematics

ND² low-speed test

Layout in 8-layer MIT-LL process Size: 12 um x 26 um

dc bias current margins: ± 15.8%

Inductive AND element

dc bias current margins: ± 18.0%

RO-SQUID based Current Driver

Relaxation Oscillations SQUIDSwitching energy: $E_s = 0.5 \cdot L \cdot l_b^2$ (~ 20 aJ/bit)Total inductance L ~ 200 pH $\tau_s \approx L \cdot l_b / V_c + L / R_s$ (~ 60 ps)Serially biased (current recycling)

Current-steering driver

 I_b operational margins: ± 11 %

RO SQUID-based Merger

- □ Very compact design
- Large fan-out

SFQ

- □ Bias current is recyclable
- Inputs and the output are decoupled (allows bias current recycling between the merged circuits)
- Switching energy for 32-to-1 merger is ~ 20 aJ
- Speed is limited by L/R (unlike of binary tree merger)

Simple Single-Column Design

dual-port register file cell

- ND² dual-port NDRO cell
- Only two half-select ports (w0/w1)
- Single bit slice 32 cells
- Three 5-bit decoders

dual-port register file slice

Synchronizing Register File with ALU

□ Common line select scheme:

□ FIFO buffers are used for synchronization

Switching energy: $E_s = L \cdot I_b^2$ (~ 150 aJ)

$$\Box \tau_{s} \approx (L \cdot I_{b} / V_{c} + L / R_{s}) \cdot \Lambda$$

□ All line drivers are serially biased

□ Pipelined select scheme:

- Directly synchronized to ALU
- **Switching energy:** $E_s = L \cdot I_b^2$ (~ 150 aJ)
- $\Box \tau_{\rm s} \approx (L \cdot I_b / V_c + L / R_{\rm s})$
- □ All line drivers are serially biased

Decoder Block Diagram

Address input

Decoder Cell Array

8-bit 32-word Register File

8x32 register file matrix

4-bit Decoder Low-Speed Test

<u>F</u> ile (ptions																
0.50 0.00																	select
0.25	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	Ā3
0.25]							_	A3
0.25	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	Ā2
0.25					1	_							1				A2
0.00	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	Ā1
0.00] 🔺	±				-] _] –	- L	A1
0.00		1		4	•	4		1	•	1		1	•	1		1	Ā0
0.00	0		0		U	L	<u> </u>					1	0	1		L L	
0.23]]								
0.05			::::		****	::::			Ā	=======================================							
-0.05 -0.10																	out14
												out13					
₩												out12					
												out11					
											out10						
0.25											out9						
0.25		• • • • •	••••••		•••••		• • • • •					• • • •			••••		out8
0.00	••••					-•••						••••		• • • •		• • • •	out7
0.25																	out6
0.00			••••			•		••••	••••	· · · · ·			• • • • •	· · · · ·	••••	• • • •	
-0.25			••••				••••	· · · · ·	••••	• • • •	• • • • •		••••	• • • •		••••	
-0.25						<u></u>		• • • •			••••	• • • • •		·····	••••	••••	out4
-0.25									····	····		••••	••••	• • • • •		••••	out3
0.00								• • • • •			• • • • •			• • • • •	· · · · ·	••••	out2
0.00																	out1
0.00																	out0
Line-1 2	0.00	10.00		20.00	••••	30.00		40.00	Y0 079	50.00	••••	60.00		70.00	80	.00	90.00
11RC-1.24									1- 0.010								Time, as

DC bias current margins: ±8%

4-bit Decoder High-Speed Test

- 13 GHz
- Low-speed dc/SFQ converter
- Fast clock (13 GHz)
- Low-speed address pattern

Register File write block test

A single bit slice of 32-word Register File

Summary

We have designed a dual-port Register File

- size 32 words x 8 bit (future target 64w x 64b)
- Dual-port read-out
- Wave-pipelined
- Access time 100 ps (target speed 10 GHz)
- Based on dual-port NDRO RSFF
- Energy per 1-bit read operation ~ 50 aJ
- Energy per 1-bit write operation ~ 60 aJ

All components of the Register file were experimentally demonstrated

- Dual-port NDRO RSFF (+/- 10%)
- Half-select "dc/sfq" cell (+/- 18%)
- □ Current drivers (+/- 11%)
- 2-bit Register File block (+/- 6%)
- Register file write/read block (+/- 5%)

A single bit slice of the 32-word register file has been tested

- **Yield ~70%**
- First port operates better than the second port (work in progress)
- The whole 8-bit 32-word Register File is being fabricated