Superconducting and Flexible Multilayer High Density Interconnect

<u>Samuel d'Hollosy</u>, Andreas Engel - Hightec MC AG, Lenzburg, Switzerland Xavier de la Broïse, Alain le Coguie Jean-Luc Sauvageot and Vincent Moreau. – CEA/IRFU, Saclay, France

Motivation / Needs

More text here, More text here

Our solution

Thin polyimide support ~34 um total
Narrow tracks 15um
Superconducting Ti/Nb/Ti stack
Multilayer for shielding and rf striplines

Realization for Athena Satellite project

More text here, More text here

HIGHTEC Custom made MicroCircuits

Applications

- Connection to thermal sensitive TES
 Detector
- RF connection to mK stage experiments
- RF Feed line for Quantum Computers
- SQUID Readout
- General superconducting applications at K or mK stage

Features

Wire bonding interconnects

Standard surface mount technology possible

3d Model here

Measurements & Performance

Critical Temperature:

The transition has been improved from 8.3 K in the first batches to 9.21 K in the last.

Metallization layers with better adhesion have varying transition between 8.3 and 9.0 K

Residual resistance ratio (RRR):

Values 1.6 and 4 are measured where the

Transition Temperature measured on 4 lines on cable. The residual resistance is due the access lines in the measurement setup.

Thermal conductivity (arbitrary unit) of a variant with ?? lines and cable width of ?? versus the hottest side temperature. The data is compared to that of a manganin wire (l=120mm, d=0.13mm)

Thermal conductivity
(arbitary unit) of a variant with ??
lines and cable width of ?? Versus
the hottest side temperature. The data
is compared to that of a manganin
wire (l=120mm, d=0.13mm)

Radio frequency measurements