1LP3-11

Robinson Research Institute

Dynamic resistance measurements in a four-tape YBCO stack *Z. Jiang¹, W. Zhou^{1,2}, C. W. Bumby¹, M. Staines, R. A. Badcock¹, N. Long¹, J. Fang²*

¹ Robinson Research Institute, Victoria University of Wellington, New Zealand. Email: zhenan.jiang@vuw.ac.nz

² School of Electrical Engineering, Beijing Jiaotong University, China

Introduction

- Many HTS applications, such as rotating machines, magnets, flux pumps, and Superconducting Energy Storage Systems (SMES), HTS wires carry DC transport current under external AC magnetic fields [1-4].
- When the amplitude of external magnetic field is larger than a threshold amplitude, dynamic resistance will occur [5-7].
 Dynamic resistance is dissipative and hence plays an important role for many HTS machinery applications [1-4].

- For high current-carrying capacity in these applications, it is essential to assemble the HTS wires by stacking.
- In previous works, we have measured dynamic resistance in coated conductors exposed to perpendicular magnetic fields, and have developed an equation which can predict the dynamic resistance of a single superconducting strip [8, 9].
- However there have been no report on dynamic resistance measurement in parallel connected HTS stacks.
- In this work, we report on dynamic resistance measurements in a four-tape YBCO stack comprising 4 mm-wide coated conductors manufactured by SuperPower Inc.
 - Perpendicular magnetic field
 - Various DC current levels
 - Magnetic field amplitude (up to 100 mT)
 - Two frequencies

Results

Stack vs single tape

Frequency dependence

Sample specifications

Wire type				YBCO	
Manufacturer				SuperPower	
Width (mm)				4.0	
YBCO layer thickness (µm)				1.0	
Substrate thickness (µm)				50.0	
Cu stabilizer thickness each side(μm)				20.0	
<i>I</i> _c values in the fou	ır cond	uctor co	mprisin	g the YB	CO stack
	T-1	T-2	T-3	T-4	Average
Self-field I_{a} (A)	96.6	96.6	96.0	96.5	96.4

- There is no obvious difference between the results at 67.89 Hz and 87.65 Hz.
- The result suggests the hysteretic nature of dynamic resistance in the stack..

Stack vs single tape

At $I_t = 8.4$ A, the B_{th} value for the stack is approximately 2.5 times those in the

Stack vs single tape

100

- The averaged gradient value in the figure is more than 2.5 times the theoretical value for the single conductor.
- B_{th} values for the stack are bigger than those in the single conductor at each DC current value \rightarrow Shielding effect from circulating current present in each wire in the stack
- The effect is more remarkable when the DC current value is small and the effect

single conductors.

- The B_{th} values in the stack decrease in faster rate than those for the single conductor.
- A detailed electromagnetic field analysis will be desired to investigate the magnetic flux movement and understand the cause of the gradient increase in the stack
- becomes weaker with increasing DC current values.
- The gradient values of the linear fits (dR_{dyn}/dB_a) for each tape of the stack are much bigger those for the single conductor

References

[1] E. Pardo *et al., IEEE Trans. Appl. Supercond.* 24, 4700105 (2013).
[2] P. J. Masson *et al., IEEE Trans. Appl. Supercond.* 15, 2218-2221 (2005).
[3] Z. Jiang *et al., Appl. Phys. Lett.* 105, 112601 (2014).
[4] C. Bumby *et al., Supercond. Sci. Technol.* 29, 024008 (2016).
[5] K. Ogasawara *et al., Cryoginics* 16, 33-38 (1976).
[6] M. P. Oomen *et al., Supercond. Sci. Technol.* 12, 382-387 (1999).
[7] M. Ciszek *et al., Supercond. Sci. Technol.* 15, 1275-1280 (2002).
[8] Z. Jiang *et al., Supercond. Sci. Technol.* 30, 03LT01 (2017).
[9] Z. Jiang *et al., IEEE Trans. Appl. Supercond.* 27, 5900205 (2017).
[10] S. Fukui *et al.,* Advances in Cryogenic Engineering. 44, 723-730 (1998).
[11] E. H. Brandt and M. Indenbom, *Phys. Rev. B*, 43, 12893-12906 (1993).

Summary

- We have measured dynamic resistance in a four-tape YBCO stack comprising 4 mm-wide YBCO coated conductors carrying same current in each conductor under an AC perpendicular magnetic field.
- Threshold field values in the stack are much bigger than those for a single coated conductor due shielding effect from circulating current present in each wire in the stack, and the effect becomes weaker with increasing DC current value in each conductor.
- The gradient values (dR_{dyn}/dB_a) from the linear fit of the composite data for the stack are more than twice those for the single conductor. This might be due to I_c (B) dependence of the conductors in the stack. A numerical electromagnetic analysis is needed to better understand the experimental result.