Superconductors under dynamic electromagnetic conditions in electric machines

P.G. O’Brien, R.R. Taylor
Queensland University of Technology
Brisbane, Australia

Aim
Research performance of superconductors in electromagnetic field of real-world superconducting machine under dynamic conditions

Research methods
Modelling, simulation and tests under dynamic electromagnetic conditions experienced in a maritime electric propulsion application

Application advantages
✓ Reduce volume and weight
✓ Improve efficiency
✓ Enhance dynamic stability

Superconductors
High Current Density & Low Losses (DC)

Synchronous Machine
Superconducting field (DC) winding

Siemens HTS1 Demonstrator
HTS machine relocated from Siemens Germany to QUT Banyo Pilot Plant Precinct (PPP) in Brisbane Australia

Siemens HTS1:
• synchronous machine
• 400 kW
• 400 V
• 50 Hz
• 1500 rpm
• technology demonstrator

HTS rotor pancake coil windings BSCCO-2223 tape

QUT Banyo PPP – HTS1 Test Environment
• HTS1 direct coupled to asynchronous motor (ASM)
• Sinamics S120 converter system with regeneration over DC link
• Operation as motor or generator with torque control

Experimental capability:
• Dynamic tests: load changes, overload, speed/torque changes
• Steady state tests: losses, efficiency, temperatures

QUT Banyo – Drive & motor test environment

Results of Re-Testing Australia
Initial tests completed 2017:
• Open circuit (OC) characteristic
• Short circuit (SC) characteristic
• Harmonic distortion

Results:
• Matched Siemens 2001/2015 within 1-2%

Next steps:
• Converter operation
• Load changes
• Full load tests
• Losses
• Rotor coil characterisation

Modelling / Simulation
Verify fidelity of modelling / simulation with experimental results

Multiscale approach
System – Matlab/Simulink
Device – FEA (COMSOL)
Superconductor – FEA (COMSOL)

The project is part of the Queensland University of Technology (QUT), Australian Defence Science and Technology Group (DST Group) and Siemens joint research agreement to advance the use of HTS technologies in maritime applications.