Flux pinning by InAs nanorods in Nb thin films

DongHo Kim, TaeJong Hwang, Minhyuck Jo, JaeChul Shin: Yeungnam University, S. Korea

Motivation

- Linear defects are excellent flux pinning centers
- Semiconductor nanorods with their diameters comparable to the superconducting coherence lengths are routinely grown by MOCVD
- Why not semiconducting linear defects for flux pinning?

Growth of InAs nanorods

- Horizontal MOCVD system
- Source: Arsine (AsH₃) and trimethyl-indium (TMIn)
- Substrate: p-type Si (111)
- Growth temperature: 570 °C

- · Mostly vertical growth
- Some nanorods grow in oblique direction
- Non-uniform areal density: ~2×10⁹/cm²
- Matching field B_{Φ} : $\Phi_0 \times$ (density) = ~0.04 T
- Nanorod length: $5 \mu m \pm 2 \mu m$
- Nanorod diameter *d*: 80 nm ± 5 nm

Nb deposition

DC magnetron sputtering

Ar pressure: 5×10⁻³ mbar

Power: 145 W

- Deposition rate: 28 nm/min
- Formation of Nb strip using metal shadow mask
 Nb thicknesses t. 400 nm
- Two samples: **Nb-InAs** (on nanorod grown substrate)

Nb (on bare substrate)

Resistive transitions for field \(\precedut \) substrate

- Higher T_c in Nb-InAs than in Nb for field \perp substrate
- But broader transitions in Nb-InAs nanorods

Upper critical field $B_{c2}(T)$ in perpendicular direction

- $B_{c2}(0) \approx 4.5 \text{ T}$
- Coherence length
- $\xi(0) \approx 8.4 \text{ nm}, \ \xi(4 \text{ K}) \approx 12 \text{ nm}$ $\xi(6.5 \text{ K}) \approx 17 \text{ nm}, \ \xi(7.5 \text{ K}) \approx 24 \text{ nm}$
- Nanowire diameter (80 nm) > 2ξ

Critical current density: J_c

• Enhanced J_c for all T in Nb-InAs for perpendicular fields

- Power-law dependence of the critical currents I_c on (1-b) of (a) Nb-InAs and (b) Nb, where b = B/B_{irr}.
- Nb: $I_c \propto (1-b)^{1-1.2}$
- Nb-InAs: $I_c \propto (1-b)^{1.5-2}$

Scaling of pinning force density: F_p

- Point pin
- Flux line spacing > size of pin
- Volume pin
- Flux line spacing < size of pin
- The size to be compared is the diameter *d* when a magnetic field is applied parallel to the nanorod axis.
- Crossover field $B_0 = 0.38 \text{ T}$

	Type of interaction	Geometry of pin	Type of center	Pinning function	Maximum position
	Core	Volume	Normal	$(1-b)^2$	<i>b</i> = 0
			Δκ	<i>b</i> (1- <i>b</i>)	b = 0.5
		Point	Normal	$b(1-b)^2$	b = 0.33
			Δκ	$b^2(1-b)$	b = 0.67

Dew-Hughes, Phil. Mag., vol. 30, pp. 293-305, 1974

Nb scaling

- Nb results fit well to b(1-b): $\Delta \kappa$ volume pinning, but it is unnatural.
- Instead we consider $b(1-b)^2 + b^2(1-b) = b(1-b)$, equal contribution of normal and $\Delta \kappa$ point pinning.

Nb-InAs scaling

- F_p of Nb-InAs at 7.5 K fits well to mixed point pin ($B < B_0 = 0.38$ T): **2.5** $b(1-b)^2 + b^2(1-b)$: more of normal point pinning
- $(1-b)^2$ for F_p of Nb-InAs at 4.0 K and b > 0.6 (B > 1.1 T): volume pinning

Angular dependence of J_c of Nb-InAs

• Between 0.05 T and 1.4 T, $J_c^{\perp}(0^\circ)$ is higher than $J_c^{\parallel}(90^\circ)$, indicating that flux pinning by nanorods is more effective than the surface pinning in the range of $B_{\Phi} < B < \sim 25 B_{\Phi}$.

field

current

• Out of the above range, however, J_c^{\perp} is lower than J_c^{\parallel} : Below B_{Φ} , flux motion between linear defects is allowed, above $25B_{\Phi}$ the flux line density greatly exceeds the nanorod density.

Details of $J_c(0^\circ)$ peak

- Pinned length inside nanorod ~ $1/\cos\theta$ (dashed line). When the magnetic field is aligned in the diagonal direction of the embedded part of the nanorod at $\theta=\pm\theta_{\rm p}$, the length of the pinned flux will be the maximum and $J_{\rm c}$ will also be at its maximum.
- $J_{\rm c}$ peak positions are shown by the arrows.
- θ_p≈ 13°

- Sketch of pinning of inclined flux lines inside nanorod
- The angle for maximum pinning for 80 nm thick nanowire is 11° for 400 nm thick film.
- Aspect ratio can be an important factor for pinning effectiveness.

Summary

- Feasibility study of semiconducting nanorods for flux pinning centers by measuring transport properties of Nb films on vertically grown InAs nanorods.
- Enhanced T_c , B_{c2} , J_c , and F_p for field applied parallel to the nanorod direction are evidences for effective flux pinning by InAs nanorods even if the nanowire diameter is a few times larger than the coherence length.
- Angular dependence of J_c provides another evidence of flux pinning by InAs nanorods and it also suggests that flux pinning by nanorods is more effective than the surface pinning in the range of $B_{\Phi} < B < \sim 30 B_{\Phi}$.
- Broad J_c plateau with a dip structure at around perpendicular field can be understood in terms of accommodation of inclined flux lines inside the nanorods.