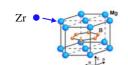
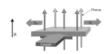


DEVELOPMENT AND CHARACTERIZATION OF MgB₂ SUPERCONDUCTING WIRE

<u>L.B.S. Da Silva</u>, R.G. Souza, A.A. Vianna, E.J. Ribeiro, P.M. Pinto, H. Rigamonti Jr, D. Rodrigues Jr lucasarno@usp.br , durval@demar.eel.usp.br

Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), Lorena, SP, Brazil

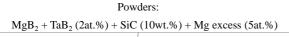

ABSTRACT


The high values of MgB_2 intrinsic properties, such as the upper critical magnetic field (40 T) and critical temperature (39 K), creates the possibility to use this material for applications in high fields, including due to the low cost of the raw materials. The goal of this work is to develop a route to produce an MgB_2 superconducting wire, since the primary powders preparations to final heat treatment of sinterization. TaB_2 and SiC is mixed with MgB_2 powder, on an attempt to enhance the flux pinning and the material's transport capacity. The MgB_2 +additions powder was prepared using high energy ball milling to mix and refine the grains, and then it was packed inside of niobium and monel (CuNi) tubes, using the powder-in-tube (PIT) technique. The final superconducting wire is composed by 42 filaments of MgB_2 . The characterization of the samples heat treated in different temperatures and times show the microstructure and phase distribution in their cross sections, along with some superconducting properties and characteristics.

INTRODUCTION

Increase critical current density, J_c

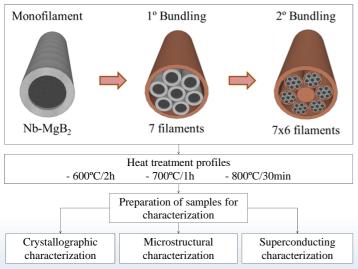
- ✓ Grain boundaries
- ✓ Connectivity
- ✓ Crystalline defects
- ✓ Porosity
- ✓ MgO
- ✓ Doping



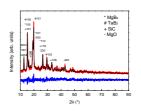
Magnetic Flux Pinning

EXPERIMENTAL PROCEDURE

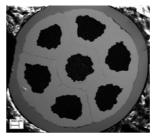
POWDER PREPARATION

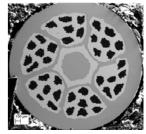


Glove-box (argon)


High energy ball mill (SPEX 8000D)

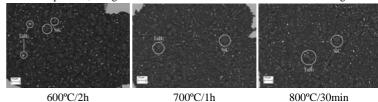
WIRE PRODUCTION PROCESS

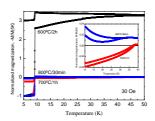

RESULTS AND DISCUSSION


CRYSTALLOGRAPHIC CHARACTERIZATION

Structural phases refinement					
Phases	Composition (wt.%)	a (Å)	b (Å)	c (Å)	Particle size (nm)
MgB_2	37.8	3.094	3.094	3.527	12.10
TaB ₂	4.5	3.103	3.103	3.233	15.11
SiC	6.8	3.080	3.080	15.177	53.92
MgO	50.9	4.173	4.173	4.173	12.10

MICROSTRUCTURAL CHARACTERIZATION




1° Bundling

2° Bundling

Microstructure of MgB_2 +additions matrix for samples after different heat treatment profiles, using backscattered electron mode detector. 2° Bundling.

SUPERCONDUCTING CHARACTERIZATION

DC magnetization curve as a function of temperature, for different profiles of heat treatment.

CONCLUSION

It was possible to develop a homogeneous multifilamentary MgB_2 superconducting wires using the powder-in-tube (PIT) technique and a combined mechanic deformation with swage and wire drawn. The microstructural characterization shows that the mechanical production process is efficient, maintaining the cylindrical geometry and intact diffusion barriers. The Nb barriers were effective against the Cu diffusion. Crystallographic characterization showed the large amount of MgO phase in the initial powder.

This work is related to the preliminar results about the MgB_2 +additions wire, the superconducting characterization demonstrated that the heat treatment and MgO grown still requires optimization.

ACKNOWLEDGEMENTS

