Increased pinning strength in 2nd generation REBCO CAMBRII ## coated conductors grown by liquid assisted processes. John Feighan¹, Ahmed Kursumovic¹, Xuejing Wang², Haiyan Wang², Judith MacManus-Driscoll¹ ¹Department of Materials Science and Metallurgy, University of Cambridge ²Department of Materials Engineering, Purdue University #### 1. Introduction Second generation coated conductors - Secondary generation ReBa₂Cu₃O_{7-X} (REBCO) tape has the potential to substantially improve the efficiency of hundreds of products across a variety of sectors. - To achieve this potential new methods are needed that can improve the cost of using the tapes and increase the pinning together. Our work - We are aiming to use liquid assisted processing (LAP) routes to grow films at an exceptionally a fast rate, thereby increasing production throughput and lowering costs. - LAP is a PVD method where the film (here REBCO) grows from a liquid layer induced by control of the RE:Ba:Cu stoichiometry, T, pO2, etc as shown in Fig 1. The high rates of diffusion in liquids allow for very fast rates of REBCO formation [1]. - The liquid layer can either be present during deposition (in-situ LAP) or be induced after the deposition of an initial layer (ex-situ LAP). - We have combined LAP with various techniques to create optimised pinning centre microstructures to generating films with both fast growth and strong performance. films made using standard PLD (see Fig 5). #### RE:Ba:Cu ratio used Figure 1. Schematic in this study Ternary phase diagram for = In-Situ LAP study the RE-Ba-Cu system at = Ex-Situ LAP study ~ 850 °C and 10⁻⁵ Torr pO₂ [2]. For a film to contain liquid under these 60 conditions it must have a 40 Liquid composition that lies on a 80 tie line (not shown) between the liquid and a 100/ stable phase e.g. RE₂O₃. **BaO**0 #### 2. In-situ Liquid Assisted Processing a thin liquid layer to be present throughout the deposition. The depositing flux supersaturates the liquid on contact, REBCO) to precipitate inducing a film (here out (see Fig 2). • The biggest ## • In-situ LAP requires Deposition flux Figure 2. In-situ liquid assisted processing. problems facing this method are stopping the liquid layer reacting with the substrate and, as the fast diffusivity leads to highly perfect REBCO crystals [3], creating strong pinning centres. ### 3. Ex-situ Liquid Assisted Processing be changed again so that this liquid crystallizes as the desired REBCO layer. • The best example of this method is the reactive co-evaporation by deposition and reaction (RCE-DR) used by SuNAM Co. LTD. [4]. Here an amorphous pre-layer is deposited by e-beam deposition. The film is then taken through specific T and pO₂ conditions (see Fig **Figure 3.** Ex-situ liquid assisted processing. Stages 1,2 and 3 are identified in the text. Final REBCO film 4) to transform it into REBCO via an intermediate liquid • The main pinning centres in these REBCO films are 75-150 nm diameter Gd₂O₃ particles. For a stronger performance, especially in high-field-low-T conditions [5][6], a better microstructure would have more, smaller, Gd_2O_3 particles. • One of the biggest challenges facing this method is generating smaller Gd_2O_3 particles without sacrificing the fast growth rates. Figure 4. Stability diagram showing the RCE-DR process used by SuNAM Co. Ltd. An amorphous film (1) is processed by heating at low pO_2 (2) and then raising the oxygen pressure (3) to transform the film into GdBCO and trapped Gd₂O₃ particles via an intermediate liquid phase. **Figure 5.** a) J_c vs angle and b) J_c vs field plots showing the strong performance of a in-situ LAP sample. Ex-situ • We have successfully replicated the RCE-DR process using PLD, rather than e-beam deposition. 0.75-1 μ m thick GdBCO films, with strong epitaxy, high T_c 's and a dispersion of Gd_2O_3 particles (see Fig 6) were produced. Importantly film formation was exceptionally fast with growth rates (> 1 μ m/min). • Three methods are being investigated into how to refine the Gd₂O₃ particles: 1) Using inoculants (e.g. Pt or Ce), 2) Using different rare-earths, 3) Using different Gd:Ba:Cu ratios to change the liquid:Gd₂O₃ ratio present in the film before GdBCO crystallisation. • Current efforts have generated a variety of Gd₂O₃ particle sizes (as identified from Williamson-Hall plots) and an investigation into the effect of their size **Figure 6.** All data was collected on films of GdBCO + Gd₂O₃ grown by an ex-situ LAP process. a-d) XRD traces of films at various stages of the ex-situ processing route. e) TEM cross section showing a film with strong epitaxy, slight crystalline disorder and a remnant liquid layer on top. f) Williamson-Hall plot of 5 films with a variety of Gd_2O_3 particle sizes. g) Representative R vs T plot for these films, showing their high T_c (91 K). ### 5. Conclusions To realise the dream of widespread coated conductor new methodologies are needed to produce tapes both fast and with high performance. Our study looks into trying to achieve this using both in-situ and ex-situ methods of liquid assisted processing, whilst simultaneously looking at ways to control and even design the microstructures to optimise their pinning characteristics. We have successfully created highly aligned high T_c films, at high rates, and with good J_c performance relative to standard PLD films. #### Acknowledgements 50 (004) 30 (002) 10 20 This work was supported by the Engineering and Physical Sciences Research Council, Doctoral training account (grant number EP/N509620/1), EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program under Grant Agreement No. 280432, and also partially funded by SuNAM Co. Ltd., and Applied Materials, Inc.