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Abstract

Majorana fermions are particles identical to their antipar-
ticles proposed theoretically in 1937 by Ettore Majorana
as real solutions of the Dirac equation. Alexei Kitaev
suggested that Majorana particles should emerge in con-
densed matter systems as zero modes excitations in one-
dimensional p-wave superconductors, with possible appli-
cations in quantum computation due to their non-abelian
statistics. The search for Majorana zero modes in con-
densed matter systems led to one of the first realistic mod-
els based in a semiconductor nanowire with high spin-
orbit coupling and induced superconducting s-wave pair-
ing and Zeeman splitting. Soon, it was realized that size-
quantization effects should generate subbands in these sys-
tems that could even allow the emergence of more than one
Majorana mode in each edge, one of the reasons the zero
bias signature of these modes were not detected as pre-
dicted theoretically. In this work, we provide a connection
between a finite-size nanowire with two occupied subbands
and a 2-band Kitaev chain and discuss the advantage of an
one-dimensional model to understand the phenomenology
of the system, including the presence of a hidden chiral
symmetry and its similarity with a spinfull Kitaev chain
under a magnetic field.

General Hamiltonian

Nanowire Hamiltonian:

H0 = HSM +HR +HZ, (1)

HSM = 1
2m∗

(Π2
x + Π2

y)− µ + V (x, Lx; y, Ly),
(2)

HR = λ
(
~σ ∧ ~Π

)
· ẑ, (3)

HZ = 1
2
~σ · ~B. (4)

Proximity-induced s-wave supercon-

ducting order parameter:

H =
H0 ∆

∆∗ T H0T −1

 (5)

Size-quantization on the
nanowire

Assumptions:
•Only two subbands occupied;
•Lx→∞;
•Finite Ly;
• ~B = Bx̂

Hamiltonian:

H = τz ⊗
 p2

x

2m
− µ

σ0 ⊗ ρ0 + λσykx ⊗ ρ0

+1
2
σxBx ⊗ ρ0 + σ0 ⊗

Esb

2
(ρ0 − ρz)


− τφ ⊗ σy ⊗ (ρx|∆12| + ρ0∆+ + ρz∆−)
− Ebmτ0 ⊗ σx ⊗ ρy. (6)

Effective Hamiltonian

Assumptions:
•Spin orbit can be added in first order
perturbation theory;

•Zeeman field is high enough to neglect
one of the spin channels;

•The effective superconducting coupling
can be added as the mean value of the
electron-hole coupling.

Hamiltonian:
Heff = ε(pz)τz ⊗ ρ0 + µ12(pz)τ0 ⊗ ρy

− τφ ⊗ eiφ~ρ · ~d sin pz. (7)

~d := λ

B
(−∆−,∆+,∆12) (8)

ε(pz) :=
 p2

z

2m
− µ

 (9)

µ12(pz) := Ebm

1−
λpz

2B

2 (10)

Two band Kitaev chain!

Chiral symmetry and
topological classification

Two possible chiral symmetries

1 SDIII = τφ+π/2 ⊗ ρ0;

2 SBDI = τφ+π/2 ⊗ ~d · ~ρ.

Chiral symmetry condition:
{Heff , S} = 0
•DIII class: µ(pz) = 0
•BDI class: µ(pz) = 0 or dy = 0
Analogy with spinfull Kitaev chain

Heff = ε(pz)τz ⊗ ρ0 + τ0 ⊗ ~µ12(pz) · ~ρ
− τφ ⊗ eiφ~ρ · ~d sin pz. (11)

BDI chiral condition: ~d ⊥ ~µ12(pz)

Topological invariant

w =
∣∣∣∣∣∣
∮
BZ

dk

4πi
tr[SBDIH−1

k ∂kHk]
∣∣∣∣∣∣ . (12)
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Figure 1: Eigenvalues (in units of t) for a system described by the Hamiltonian (15) with 100 lattice positions as a
function of γ with µ = 0, m = 0.5t and d = 0.75t. (a) ρi = ρx, ρj = ρy; (b) ρi = ρx, ρz = ρy; (c) ρi = ρy, ρj = ρz. It
is visible that unless ~d lies on the x− z plane, minigap states can emerge, indicating chiral symmetry breaking.

Numerical implementation

Simplified Hamiltonian:
Heff = ε(pz)τz ⊗ ρ0 + τ0 ⊗ ~µ12(pz) · ~ρ

− τy ⊗ dργ sin pz, (13)
ργ = ρi sin γ + ρj cos γ. (14)

Figure 2: Winding number calculated for the Hamiltonian in
Eq. 15 varying µ and m and with d = 0.75t, ργ = ρx. We
see that three distinct topological phases are possible, with
winding number 0, 1, and 2.
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Numerical implementation

Simplified Hamiltonian:
Heff = ε(pz)τz ⊗ ρ0 + τ0 ⊗ ~µ12(pz) · ~ρ

− τy ⊗ dργ sin pz, (15)
ργ = ρi sin γ + ρj cos γ. (16)

Figure 3: Winding number calculated for the Hamiltonian in
Eq. 15 varying µ and m and with d = 0.75t, ργ = ρx. We
see that three distinct topological phases are possible, with
winding numbers 0, 1, and 2.

Conclusions

There is a mapping between finite size semiconductor
nanowire with high spin orbit and induced s-wave super-
conductivity to a 2-band Kitaev chain. The results are
equivalent with spinfull p-wave superconductors, as there
is a relation between the effects of the interband coupling
and the Zeeman field on the breaking of chiral symmetry.
Calculations of the winding number corroborate results on
literature that point the possibility of existence of multiple
Majorana excitations at the ends of finite size nanowires
when BDI chiral symmetry can be preserved.

Acknowledgements

Nam mollis tristique neque eu luctus. Suspendisse rutrum
congue nisi sed convallis. Aenean id neque dolor. Pellen-
tesque habitant morbi tristique senectus et netus et male-
suada fames ac turpis egestas.

Contact Information

•Web: http://www.university.edu/smithlab
•Email: john@smith.com
•Phone: +1 (000) 111 1111

http://www.university.edu/smithlab
mailto:john@smith.com

