Thermal-hydraulic characterization of the ITER **EUCAS 2017 Toroidal Field Insert coil**

ITF_PT_OUT (P)

ITF_TO_OUT (TT

ITF_TC_OUT 🗰

Insulator

TF_H_01 ~ 02 🛓

TS_111

TS_02H

S ITF TS 03H

TS O4H

(TS) ITF_TS_07H

SITE TS 08H

Insulator

Alberto Brighenti¹, Roberto Bonifetto¹, Takaaki Isono², Nicolai Martovetsky³, H. Ozeki², Laura Savoldi¹, Roberto Zanino¹

- NEMO Group, Dipartimento Energia, Politecnico di Torino, Torino, Italy
- National Institutes for Quantum and Radiological Science and Technology, Naka, Japan
- US-IPO, Oak Ridge, TN, USA 3.

Background

The ITER Toroidal Field Insert (TFI) coil:

- single-layer Nb₃Sn solenoid;
- tested in 2016-2017 at QST (Naka, Japan) in the borehole of the Central Solenoid Model Coil;
- tested in ITER- relevant operating conditions;
- multiple tests performed to characterize the behavior of the coil \rightarrow

Calibration of 4C code TH input parameters

H_{HR} calibration

- Dedicated simulations performed to calibrate H_{HB} multiplier
- RH heat slug shot used as
 - reference for the calibration

POLITECNICO

DI TORINO

dedicated Δp measurements, heat slugs with resistive (RH) and inductive (IH) heaters.

Objective

Analyze data collected during tests of the TFI to deduce (thermal-) hydraulic constitutive relations to be used in the 4C code.

Experimental setup

- Multiplier varied parametrically to fit temperature traces
- Best result has been used to simulate IH heat slugs with/without magnetic field

H_{HB} multiplier equal to 8 gives best agreement, similar to [R. Bonifetto, IEEE Trans. Appl. Supercond., 2017].

Simple mandrel structure module

- ITF_VD_HR_N (ITF_HR_N) (local kapton insulation is removed)

TH constitutive relations in the 4C code

Data collected during cold operation of the conductor are in line with hydraulic characteristic in the operation range described by existing correlations

MND

- Friction factors: Tronza correlations (× 1.1) suitable in ITER operating conditions
- Heat transfer coefficients:

l jk

Consider T

evolution

- Bundle/Hole \rightarrow increase HTC_{nospiral} by a factor of 8 (in the same ballpark of other ITER conductor)
- Conductor/Mandrel \rightarrow HTC_{MND} \approx 1.5 W/m²K @ 4.5 K

EUCAS 2017 Conference, 2017 Sept. 17 – Sept. 21, Geneva, Switzerland; Abstract no.: 3LP1-05