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1. Aim of the work

* Pre-conceptual design of Poloidal Field (PF) coils of EU DEMO fusion reactor
developed by SPC and ENEA, within WPMAG
* Pulsed operation - AC (coupling) losses = heat deposition
~F
= Check of the design in terms of minimum temperature margin and hydraulic
performance

= nt not known for the proposed conductor design = parametric analysis

2. PF Coils design
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...so that if B and | are present Bundle void fraction decreases (21%)

low Impedance channel opens! [2]

3. Plasma scenarios
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4. 4C model

* Thermal-hydraulic model of the PF colls and cryogenic circuit developed using 4C
code [3], including:

1. Winding pack (1D M&M [4] compressible model for each conductor)
2. Cooling circuit (0D/1D Dymola model [5]) [dimensions scaled from ITER
PF&CC cooling circuit]
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5. Results
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Minimum temperature margin requirement But if >1 kW/conductor are deposited,

(ATmar>1.5 K) Is always fullfilled backflow is in the first ~100 m, while
Parametric study on nt minimum AT, @ ~300 m!

3 . — Empty symbol->no backflow @

Full symbol->backflow present ) )
Backflow does not influence AT ..., but still
not advisable during normal operation
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| L) requirement is considered, but backflow arises already
@ when nt Is doubled!
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6. Conclusions

« EU DEMO PF coil system 4C model developed and applied to two different scenarios
« Minimum temperature margin requirement always fulfilled
« Backflow Is present in few conductors



