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2. PF Coils design 

1. Aim of the work 

6. Conclusions 

3. Plasma scenarios 

Coil topology 
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4. 4C model 
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• Thermal-hydraulic model of the PF coils and cryogenic circuit developed using 4C 

code [3], including: 

 

1. Winding pack (1D M&M [4] compressible model for each conductor)  

2. Cooling circuit (0D/1D Dymola model [5]) [dimensions scaled from ITER 

PF&CC cooling circuit] 
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5. Results  

• Pre-conceptual design of Poloidal Field (PF) coils of EU DEMO fusion reactor 

developed by SPC and ENEA, within WPMAG 

• Pulsed operation  AC (coupling) losses  heat deposition 

 

 Check of the design in terms of minimum temperature margin and hydraulic 

performance 

  nt not known for the proposed conductor design  parametric analysis 
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PF Conductor feature 

High void 

fraction (40%)… 

…so that if B and I are present • Bundle void fraction decreases (21%) 

• low impedance channel opens! [2] 
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Effect of  channel opening 

due to Lorentz force 

PF1 PF2-3-6 PF4-5 

Multiple-in-hand 

winding strategy to 

keep low (<500 m) the 

hydraulic length [1]  
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Assumption: 

Temperature margin 

Minimum temperature margin requirement 

(DTmar>1.5 K) is always fullfilled 
But if >1 kW/conductor are deposited, 

backflow is in the first ~100 m, while 

minimum DTmar @ ~300 m! 

Premagnetization 

Backflow does not influence DTmar, but still 

not advisable during normal operation 

Parametric study on nt 

nt = 150 ms 

1 

Empty symbolno backflow 

Full symbolbackflow present 

nt can be increased for various PF (2, 3 and 5) 

conductors by more than 3 times if temperature margin 

requirement is considered, but backflow arises already 

when nt is doubled! 

Minimum 

temperature margin 

is not greatly 

affected by the 

channel opening 

Total mass flow increases if channel 

opens (lower hydraulic impedance), but 

backflow at conductor inlet also increases!  

• EU DEMO PF coil system 4C model developed and applied to two different scenarios 

• Minimum temperature margin requirement always fulfilled 

• Backflow is present in few conductors 

Inter-turn / Inter-layer thermal 

coupling accounted for 

Driver: AC (coupling) losses 
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