

Investigation on Two Techniques for the Reduction of Screening Current-Induced Field Effects in REBCO HTS Coils

G. Dilasser¹, P. Fazilleau¹ and P. Tixador²

- ¹ CEA Saclay, IRFU/DACM, 91191 Gif-sur-Yvette, France
- ² CNRS, Institut Néel, 25 Avenue des Martyrs, 38042 Grenoble, France

SCIF issue in REBCO magnets

REBCO c.c. are promising materials for high-field magnets. However, the Screening-Current Induced Field (SCIF) has problematic effects on the overall magnet field:

- Lowering of the amplitude
- Deterioration of the quality
- Slow time decay

Which are incompatible with field quality standards in practical applications.

⇒ Techniques are required to suppress the perturbations caused by the SCIF in REBCO magnets

SCIF reduction techniques

The magnet current is raised to I with an overshoot ϵ (~%), creating a favorable initial distribution of \vec{J} , thus limiting the SCIF drift.

An external AC shaking field \vec{H}_{sk} of a small amplitude (~100 mT) and orthogonal to \vec{B} triggers the SCIF relaxation at an exponential rate.

Experimental setup & protocols

- 1. Insulated coil using 75 μm inter-turn Kapton tape
- 2. MI coil using 30 µm-thick stainless steel co-winding

Parameters	Ins. coil	MI coil
Nb. of turns	133.5	160.5
I.R. / O.R. [mm]	30 / 48.8	30 / 47
Height [mm]	6	6
Inductance [mH]	1.80	2.77
Coil cst. [mT/A]	2.06	2.56

RE

Current overshoot

 \uparrow I_{REBCO} ,

√300 K

measurement Discharge Warm up

Pair of copper solenoids connected in series, used to generate the axial AC field (max. amplitude 80 mT)

Parameters	Inner coil	Outer coil
Nb. of layers	2	4
Turns / layer	52	
Inner radius [mm]	16.6	73.7
Outer radius	19.8	80.1
Height [mm]	83	
Resistance [m Ω]	14	117
Inductance [mH]	n/a	5.9

Results

Conclusions

Charge

- Vortex shaking cancels the field drift caused by the SCIF and partially removes the trapped magnetization.
- Only partial SCIF suppression was observed, further tests will show whether increasing N_{sk} or I_{sk} enhances the effect.
- Current overshoot reduces the field drift caused by the SCIF.
- No way to determine a priori the optimal overshoot value ϵ .