The ANR NOUGAT aims at developing and testing a 10 T High Temperature Superconducting insert working inside a 20 T background field. The insert is designed as a stack of pancakes wound with REBCO tapes. Although Metallic Insulated winding has been chosen mostly for its self-protection ability, electrical Insulated coils are still studied as they are required for some applications and show some advantages for user magnets. However, transition detection and protection remain challenging. A model has been developed to better understand the quench propagation inside a winding. One fully instrumented single pancake coil has been studied under high field up to 19 T to provide data to allow comparisons between model and experiments.

1D- Model for fault current limiter, self-field

Origins of the model: Fault current limiter model
- Take into account the inhomogeneity along the length of the conductor;
- Does not calculate the field generated by the coil;
- No background field.

Objectives:
- Comparison of the model with the experimental study under high field of a fully-instrumented single pancake.

Main results:
- Temperature when voltage threshold is reached

Difficulties:
- Definition of the heating initialization to match the experiments.

Comparison to experimental study

Objectives:
- Comparison of the model with the experimental study under high field of a fully-instrumented single pancake.

Main results:
- Temperature when voltage threshold is reached

Conclusion and further work

Next objectives of the model:
- Simulate the whole coil behavior under high field to anticipate the location transition and the way it propagates inside the winding.
- Match the previous study of a single pancake fully instrumented.

Difficulties:
- Definition of the heating initialization to match the experimental study.

Acknowledgment: This work was possible thanks to our colleagues. Visit (winding process), C. Möbius (mechanics), G. Novitchi (chemistry) and Y. Misumi (design, fabrication and set up of the probes). It is founded by ANR, project NOUGAT - NOUvelle Génération d’Aimant supraconducteur pour la production de Teslas avec une consommation électrique réduite, and supported by the LNCMI-CNRS, member of EMFL.