Force acting on a magnetic cloak placed in magnetic field

Mykola Solovyov¹, Fedor Gömöry¹, Ján Šouc¹, Edita Mikulášová¹, Marianna Ušáková², Elemír Ušák²

¹ Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravská cesta 9, Bratislava, Slovakia
² Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia

Magnetic cloak → advanced magnetic shield that does not affect external magnetic field.

We use coaxial arrangement of superconducting and ferromagnetic cylinders.

Magnetic invisibility → negligible force in non-uniform magnetic field (?)

numerical model in 3D and experimental verification

Experimental setup

Superconducting cylinder
6 layers from 12 mm wide SuperPower SCS12050-AP tape (Ic ~400 A), wound in the same direction with overlapping,

\[D_{in} = 45.2 \text{ mm}, \ \text{thickness} = 0.6 \text{ mm}, \ \text{length} = 145 \text{ mm} \]

Ferromagnetic cylinder
\(\text{Li}_{0.575}\text{Zn}_{0.4}\text{Fe}_{0.55}\text{O}_{4} \) ferrite powder with grain size below 80 \(\mu \text{m} \) mixed with the epoxy resin (Epoxy 1200 with the hardener P11)

\[D_{in} = 50 \text{ mm}, \ \text{thickness} = 12.75 \text{ mm}, \ \text{length} = 150 \text{ mm} \]

Results

Experimental measurements were taken using the Force meter EMS20-50N.

Numerical simulations
Relative magnetic permeability of ferromagnetic material.

Superconducting part was simulated as the tube, which value of relative magnetic permeability was 0.0045.

Conclusions

Simplified 3d model shows good prediction of the magnetic cloak behavior in non-uniform magnetic field, generated by the real magnet.

Presented model do not consider hysteresis of both used materials and non-linear properties of superconductor which critical current depends on magnitude and direction of the applied magnetic field.