Force acting on a magnetic cloak placed in magnetic field

Mykola Solovyov¹, Fedor Gömöry¹, Ján Šouc¹, Edita Mikulášová¹, Marianna Ušáková², Elemír Ušák²

¹ Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia ² Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia

Magnetic cloak \rightarrow advanced magnetic shield that does not affect external magnetic field.

We use coaxial arrangement of superconducting and ferromagnetic cylinders.

Magnetic invisibility \rightarrow negligible force in non-uniform magnetic field (?)

numerical model in 3D and experimental verification

Superconducting cylinder

6 layers from 12 mm wide SuperPower SCS12050-AP tape (I_c ~400 A), wound in the same direction with overlapping,

D_{in} = 45.2 *mm, thickness* = 0.6 *mm, length* = 145 *mm*

Ferromagnetic cylinder

Li_{0.575}Zn_{0.4}Ti_{0.55}Fe_{1.475}O₄ ferrite powder with grain size below 80 µm mixed with the epoxy resin (Epoxy 1200 with the hardener P11)

D_{in} = 50 mm, thickness = 12.75 mm, length = 150 mm

Numerical simulations

Experimental setup

 10^{-2} 10^{-3} 10^{-4} *B*, [T] Relative magnetic permeability of ferromagnetic material.

Magnetic flux density norm (mT)

Superconducting part was simulated as the tube, which value of relative magnetic permeability was 0.0045.

Results

Presented model do not consider hysteresis of both used materials and non-linear properties of superconductor which critical current depends on magnitude and direction of the applied magnetic field.

FM – ferromagnetic shell only; SC – superconducting tube; CL – magnetic cloak

exp. / calc. - experimental data and numerical simulations, respectively

This work was supported by the grant APVV-0062-11