THE CRITIC PHASE TRANSITION BETWEEN LN2 AND YBCO BULKS: FROM FEM MODELING TO ITS EXPERIMENTAL STUDY FOR ZFC LEVITATION DEVICES

A.J. Arsénio, R. Melício, C. Cardeira, P.J. Costa Branco (pbranco@ist.utl.pt)

Goals

- Time to Zero-Field Cool (ZFC) a YBCO bulk from environment down to critical temperature of superconductivity ?
- LN2 consumption during the initial ZFC of a YBCO bulk inside a Extruded Polystyrene (XPS) Vessel with top surface open ?
- LN2 consumption rate during the electromagnetic heating (EM) of a YBCO bulk inside a cryostat with top cover ?
- Operative heating time from cryogenic temperature up to critical temperature of superconductivity ?
- Experimental validation of the models used on Finite Element Simulations.

TÉCNICO LISBOA

Center of Intelligent Systems

- Differential

Finite Element Analysis

0	 Phase-Change (LN2) 		
	 Turbulent Bubbly Flow (LN2) 		
	E.M. Induction / Hysteresis Losses		
EM Heating in	Thermal Diffusion (YBCO)		
Operation:	 Thermal Convection-Diffusion (LN2, Air) 		
	Phase-Change (IN2)		

Equation	Ø	θ	α	β	f
Ampere's Law	A	-	1	-	$-\mu J_s$
Convection- Diffution	Т	1	$\frac{k}{\rho \ C_p}$	-	$\frac{Q}{\rho \ C_p}$
Navier-Stokes	u	-	$v = \frac{\mu}{\rho}$	-	$\frac{-\nabla p}{\rho}$

Experimental

LISBOA

UNIVERSIDADE

DE LISBOA

DE ÉVORA

UNIVERSIDADE

measurements

ZFC Results

Average heat flux (W/m²) at YBCO/LN2 boundary

Thermal contours (°K) (t=58s)

EM Heating Results

REFERENCES:

[1] J. Arnaud, and P.J. Costa Branco, "Electrothermal characteristics of YBCO bulk magnets deep in LN2: a preliminary analysis for its use as excitation system of low-speed synch. generators," IEEE Trans. on App SC. vol. 26(3), April 2016.

[2] A.J. Arsénio, M.V. Carvalho, C. Cardeira, R. Melício, and P.J. Costa Branco, "Experimental Setup and Efficiency Evaluation of Zero-Field-Cooled (ZFC) YBCO Magnetic Bearings." IEEE Trans. on App. SC, vol. 27, no. 4, Jun. 2017.

ACKNOWLEDGMENT

This work was supported by FCT, through IDMEC, under LAETA, projects UID/EMS/50022/2013 and PTDC/EEEI-EEL/4693/2014 – HTSISTELEC, and by the FCT fellowship

SFRH/BD/117921/2016 granted to António J. Arsénio as a

PhD student in Instituto Superior Técnico.