

AC-Loss Measurements and Detailed Loss Analysis on a 1 MVA - Class Superconducting Fault Current

Limiting Transformer

Authors: S. Hellmann¹, M. Abplanalp², M. Noe¹

Transformer Specifications

- Transformer primarily designed for current limitation
- Conventional transformer parts except superconducting secondary winding and surrounding cryostat
- Primary winding and iron core are operated at room temperature

160

 \geq

140

120

80

calibrated power input

average energy input due to AC-load

reference heater power input

LN₂ - level / mm

40

- Secondary winding cooled with LN₂ at 77.3 K in open pool boiling cryostat
- Secondary winding is composed of 12 parallel, 4 mm wide YBCO-tapes

Name	Unit symbol	Value	Unit
nominal power (single phase)	P_{nom}	577	kVA
prim. voltage / sec. voltage	U_{prim} / U_{sec}	20 / 1	kV
prim. current / sec. current	I _{prim} / I _{sec}	28.9 / 577.4	Α
prim. turns / sec. turns	$N_{\rm prim} / N_{\rm sec}$	500 / 25	-
critical current sec. winding	I _{c,sec}	1680 (avg.)	Α
grid frequency	$f_{ m grid}$	50	Hz
short-circuit impedance	u_{k}	2.98	%
fault duration for current limitation	$t_{\sf fault}$	60	ms

time, t/h

calibrated power input

reference heater power input

average energy input due to AC-load

LN₂ Laser Level Analysis - Methodology Mass Flow Analysis - Methodology Evaporation of LN₂ inside the cryostat is Heat intake into the cryostat is calculated from the changes determined by measuring the mass flow of N₂ in the LN₂ filling level. The level is determined via a laser gas leaving the cryostat, via a mass flow meter level sensor measuring the distance to a styrofoam floater on the surface of the LN₂ reservoir inside the cryostat Q_{currlead} **Pros / Cons Pros / Cons** Precise measurement possible Requires gas tight cryostat No gas tight cryostat needed Unknown Q_{hose} makes calibration No lid on cryostat required Laser sensor can be far away from any high necessary electric- or magnetic fields AC-load on transformer heating period Sensitive to thermal contractions in measurement for calibration secondary winding setup 200 measured LN₂ - level measured energy input - - - no-load energy input \geq - no-load LN₂ - level 120 mm $\sigma_{\rm i}$ 100 secondary primary level/ winding **GRF-cryostat** winding drawing is not to scale

uncalibrated results

mass flow analysis

laser level analysis

80

 \geq

o.= 60

-iron core

80

 \geq

o_.≡ 60

calibrated results

mass flow analysis

laser level analysis

(1 Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; 2 ABB Corporate Research Center, Dättwil, Switzerland)