AC-Loss Measurements and Detailed Loss Analysis on a 1 MVA - Class Superconducting Fault Current Limiting Transformer Authors: S. Hellmann¹, M. Abplanalp², M. Noe¹ ## Transformer Specifications - Transformer primarily designed for current limitation - Conventional transformer parts except superconducting secondary winding and surrounding cryostat - Primary winding and iron core are operated at room temperature 160 \geq 140 120 80 calibrated power input average energy input due to AC-load reference heater power input LN₂ - level / mm 40 - Secondary winding cooled with LN₂ at 77.3 K in open pool boiling cryostat - Secondary winding is composed of 12 parallel, 4 mm wide YBCO-tapes | Name | Unit symbol | Value | Unit | |---------------------------------------|--------------------------------------|--------------|------| | nominal power (single phase) | P_{nom} | 577 | kVA | | prim. voltage / sec. voltage | U_{prim} / U_{sec} | 20 / 1 | kV | | prim. current / sec. current | I _{prim} / I _{sec} | 28.9 / 577.4 | Α | | prim. turns / sec. turns | $N_{\rm prim} / N_{\rm sec}$ | 500 / 25 | - | | critical current sec. winding | I _{c,sec} | 1680 (avg.) | Α | | grid frequency | $f_{ m grid}$ | 50 | Hz | | short-circuit impedance | u_{k} | 2.98 | % | | fault duration for current limitation | $t_{\sf fault}$ | 60 | ms | time, t/h calibrated power input reference heater power input average energy input due to AC-load ## LN₂ Laser Level Analysis - Methodology Mass Flow Analysis - Methodology Evaporation of LN₂ inside the cryostat is Heat intake into the cryostat is calculated from the changes determined by measuring the mass flow of N₂ in the LN₂ filling level. The level is determined via a laser gas leaving the cryostat, via a mass flow meter level sensor measuring the distance to a styrofoam floater on the surface of the LN₂ reservoir inside the cryostat Q_{currlead} **Pros / Cons Pros / Cons** Precise measurement possible Requires gas tight cryostat No gas tight cryostat needed Unknown Q_{hose} makes calibration No lid on cryostat required Laser sensor can be far away from any high necessary electric- or magnetic fields AC-load on transformer heating period Sensitive to thermal contractions in measurement for calibration secondary winding setup 200 measured LN₂ - level measured energy input - - - no-load energy input \geq - no-load LN₂ - level 120 mm $\sigma_{\rm i}$ 100 secondary primary level/ winding **GRF-cryostat** winding drawing is not to scale uncalibrated results mass flow analysis laser level analysis 80 \geq o.= 60 -iron core 80 \geq o_.≡ 60 calibrated results mass flow analysis laser level analysis (1 Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; 2 ABB Corporate Research Center, Dättwil, Switzerland)