

Effects of the homoepitaxial MgO films on the growth of CeO₂ films fabricated by pulsed laser deposition

Wei Wang, Linfei Liu, Yanjie Yao, Xiang Wu, Yijie Li

School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China

Abstract

A series of homoepitaxial MgO (Homo-MgO) layer were deposit by radio-frequency (RF) magnetic sputtering on IBAD-MgO substrates. Then CeO₂ films were deposited on the Homo-MgO films by pulsed laser deposition. The results show that the quality of the CeO₂ film was not linearly dependent on the texture of homo-MgO film as expected and high quality CeO₂ film with the in-plane full width of half maximum of 2.78° fabricated under the optimized was conditions. We adopted the existence of the lattice distortion in the IBAD-MgO films and the growth mode of the homo-MgO to clarify its nature. The appearance of the CeO_2 (111) orientation was explained by the large lattice mismatch and the potential barrier caused by large value of roughness.

Results I — Homoepitaxial MgO

XRD patterns of (a) IBAD-MgO film and homo-MgO films deposited at different sputtering power: (b) 60 W, (c) 70 W, (d) 80 W, (e) 90 W, (f) 100 W and (g) 110 W, respectively. The inset shows the magnified XRD patterns of the MgO (002) peaks.

The reflection high-energy electron diffraction (RHEED) and (b) the electron backscattered diffraction (EBSD) patterns of IBAD-MgO film.

lattice point

lattice constant

dislocation

IBAD-MgO

Ce atoms

crystal nucleus

(c276)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Introduction

Coated conductors have been approved of superconducting importance to great generator, transmission cable and so on. As the texture layer for coated conductor, IBAD-MgO film is extremely thin (<10 nm), and the lattice mismatch between MgO film and superconducting layer is quite large. Therefore, inserting buffer layers between and the REBCO films is IBAD-MgO general, buffer prerequisite. In layer architecture of LaMnO₃ (LMO) /Homo-MgO was used by many scientists. However, the lattice mismatch of Y123[100]/LMO[100] is 1.80%. While the lattice mismatch of Y123[110]/CeO₂[100] is only 0.55%. So here we replace LMO with CeO₂ layer.

- ✓ The diffraction spots, observed in the RHEED pattern, indicate volmer-weber (VW) growth of the MgO film.
- ✓ The EBSD pattern shows no MgO phase in the IBAD-MgO film.
- \checkmark A shift of the MgO (002) to the right was also observed.
- ✓ In the IBAD process, the lattice constant of the cubic MgO film has been enlarged.

Results II — CeO₂ films

Lattice constan

of IBAD-MgO (enlarged

Schematic drawings showing the growth process of CeO₂ films on the homo-MgO films fabricated at (a) small and

90 W, (f) 100 W and (g) 110 W, respectively.

Method

IBAD-MgO/Y₂O₃/Al₂O₃ buffered The hastelloy C276 substrates (10 mm in width and 50 µm in thickness), which were Shanghai Superconductor produced by Technology Co. Ltd. in China, were used to

magnetic homo-MgO deposit RF by sputtering. Afterwards, the CeO₂ layer depositions were performed in a reel-to-reel pulsed laser deposition (PLD) system at optimized conditions.

Conclusion

 \checkmark The homo-MgO film and high quality CeO₂ film on the IBAD-MgO substrate was successfully fabricated by the RF magnetron sputtering and PLD techniques in sequence. \checkmark Increasing the sputtering power (P_s), the in-plane alignment homo-MgO films became better. \checkmark The highly single c-oriented CeO₂ film with the FWHM of 2.78° was fabricated on the nanoscaled homo-MgO film deposited at 70 W.

