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We have demonstrated that the metamaterial approach to dielectric response engineering increases the critical temperature of a composite superconductor-
dielectric system in the epsilon near zero (ENZ) and hyperbolic regimes. To create such metamaterial superconductors three approaches were implemented: 1) 
mixtures of tin and barium-titanate and strontium-titanate nanoparticles, 2) Al2O3-coated aluminium nanoparticles, and 3) thin Al/Al2O3 heterostructures that 
form a hyperbolic metamaterial superconductor.  IR reflectivity measurements confirmed the predicted metamaterial behavior. These results suggest the 
possibility of considerable Tc enhancement in other superconductors.  

Metamaterial 
 
•  Material engineered to have a property that is not found in nature.  
•  Made from assemblies of multiple elements fashioned from composite materials.  
•  Length scales that are smaller than those of the phenomena they influence (e. g. wavelength for 

optical).  
•  Derive their properties not from the properties of the base materials, but from their newly 

designed structures.  
•  The relevant length scale for superconductors is the coherence length, ξ.  

Summary 
•  A Macroscopic electrodynamics-based approach to superconductivity (Kirzhnits et al.) sets a very large limit on TC  
•  Electron-electron interaction is strongly enhanced in ENZ and hyperbolic metamaterials 
•  Our proof of principle experiments demonstrate validity of the metamaterial approach 

This work was supported in part by NSF grant DMR-1104676.  

                            

The effective Coulomb potential in a superconductor (D.A. Kirzhnits, et al., J. Low Temp. Phys. 10, 79 (1973)): 

Tc is defined by solving integral equation for the superconducting 
condensate: 

Where ρ(q,E) is the inverse dielectric response function: 

Evaluation of the maximum critical temperature Tc
max produced an optimistic Tc

max~300K estimate at EF~10eV. 

If εeff<0 and small then V and Tc will be large.  
Epsilon near zero (ENZ) 

Tc determined by nanostructure properties 

•  The effective medium consideration assumes a “homogeneous 
system” so that “the influence of the lattice periodicity is taken into 
account only to the extent that it may be included into εeff(q,ω)“.  

•  The “homogeneous system” approximation remains valid even if the 
basic structural elements of the material are not simple atoms or 
molecules.  

•  Artificial “metamaterials” may be created from much bigger building 
blocks, and the electromagnetic properties of these fundamental 
building blocks may be engineered at will. 

Epsilon near zero (ENZ) composite 
V. N. Smolyaninova, et al., Sci. Rep 4, 7321 (2014).

Epsilon near zero (ENZ) core-shell
V. N. Smolyaninova, et al., , Sci. Rep. 5, 15777 (2015). 

Hyperbolic
V. N. Smolyaninova, et al., , Sci. Rep. 6, 34140 (2016). 
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ENZ conditions are projected to occur around 30-50% volume fraction of BaTiO3 

Sn/BaTiO3 mixture: 
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Maxwell-Garnett approximation: 

-  An increase of the critical temperature of the order of ΔTC ~ 0.15 K compared 
to tin sample (compressed nanoparticles 

-  Location of TC maximum is consistent with Maxwell-Garnett analysis. 
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Also works for 60 nm Sn/100 nm SrTiO3   

Signif icantly smaller TC increase 
observed if diamond (εdiamond=5.6 from 
MHz to visible range) is used instead of 
BaTiO3 (εBTO: 2000 – 500) in the mixture  
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Effect is significantly reduced 
when nanoparticle size exceeds 
240 nm coherence length in Sn 
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ENZ scenario verified 

Kramers-Kronig analysis of 
FTIR reflectivity spectra: 
evaluate εeff(0,ω) 

compressed Al2O3-coated aluminum nanoparticles 
•  18 nm diameter Al nanoparticles (Tc=1.2K, ξ=1600 nm)  
•  Exposure to the ambient conditions: ~ 2 nm thick Al2O3 shell on surface 
•  Al2O3 exhibits very large positive values of dielectric permittivity up to 

εAl2O3~200 in the THz range  
•  Comparable to the 9 nm radius of the original Al nanoparticle 
•  Further Al oxidation may also be achieved by heating the nanoparticles in air  
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18 nm Al nanoparticles
Tc 

Decrease in reflectivity corresponds to 
decrease of the volume fraction of aluminium.  

B=10G 

bulk Al: TC = 1.2 K 
Al-Al2O3 core-shell: TC = 3.9 K 
 

TC is tripled 
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Corresponding FTIR reflectivity spectra 

step at ~10.5 µm is 
used to measure 
volume fraction of 
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no free parameters! 

Effective Coulomb potential: 

diverges at: 

-  Electron-electron interaction is 
s t r o n g l y e n h a n c e d i n 
hyperbolic metamaterials 

-  The best choice of geometry 
appears to be metal/dielectric 
layered structure  
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Smolyaninov, Smolyaninova, PRB 91, 094501 (2015) 

glass 

thermal evaporation of Al followed by 
1 hour oxidation in air forming Al2O3 
(1-2 nm) 

A l t h i c k n e s s a n d 
number of layers varied  

Reflectivity: 
•  Al layers are continuous and not 

intermixed with aluminum oxide 
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ENZ Al/Al2O3 
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ε1 = -7.17 and ε2 = 1.56, at 2.07 eV (600 nm) 
ε1 = -2.15 and ε2 = 1.30  at 2.88 eV (430 nm)  

Hyperbolic character of Al/Al2O3 multilayers (ε1 (in plane) < 0; ε2 (out of plane) > 0)  

•  ε1 (in plane) < 0  
•  good agreement with calculated values 

based on Al volume fraction 

Conductivity: 
•  far removed from granular Al films values 
•  approaches conductivity values of bulk Al 
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Metamaterial (multilayer) is needed for Tc enhancement 
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Curve is fit to weak coupling BCS model with Maxwell-Garnett approx. for εeff  


