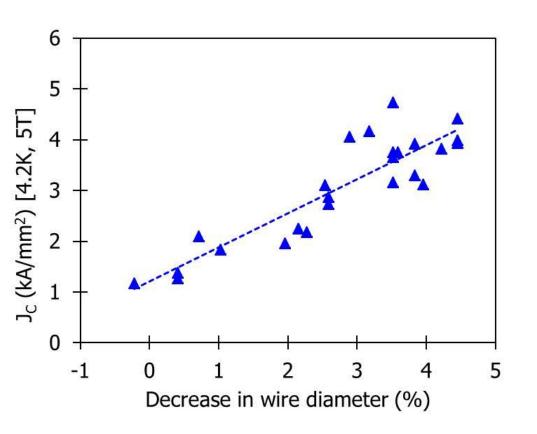
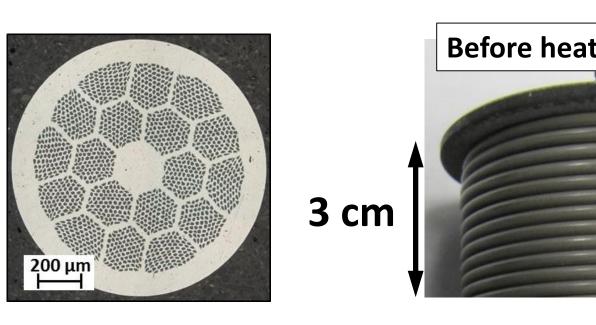
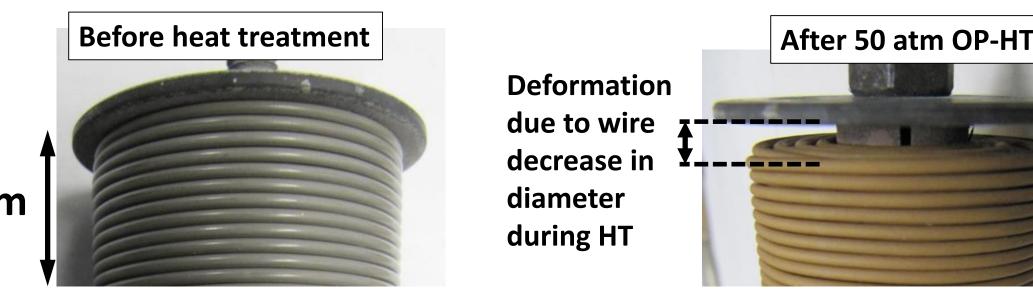


Densificaction of Bi₂Sr₂CaCu₂O_x round wires before wind and react overpressure (OP) processing

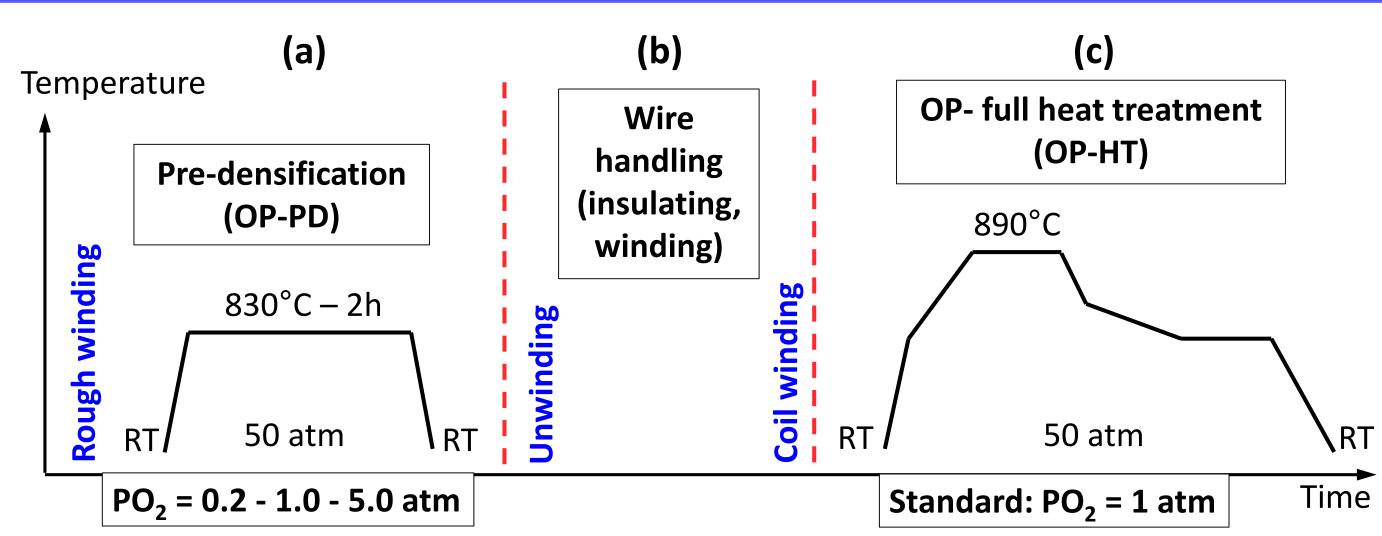

3MP4-03


M. Matras*, J. Jiang, E. Hellstrom, U. Trociewitz, D. Larbalestier


Applied Superconductivity Center, National High Magnetic Field Laboratory, Tallahassee, USA CERN, Geneva, Switzerland

Motivation: 3.8 % wire shrinkage during coil OP processing

- To reach high J_C, Bi₂Sr₂CaCu₂O_x (2212) has to be isostatically compressed with overpressure (OP) up to 50 atm during the partial-melt heat treatment (OP-HT) to reduce filament porosity. It results in about 3.8 % decrease in wire diameter.
- The decrease in wire diameter leads to a loose winding pack in solenoid magnets and may cause motion and deformation during the OP heat treatment.



We describe and study a process to pre-densify the wire before winding and heat treat the coil with pressure. We found that:

- the process reduces wire diameter shrinkage to 0.7 % during OP-HT.
- Dense wire can be wound into 10 mm diameter coil with no 2212 leak after OP-HT and no I_C degradation
- I_C was increased by 22% by increasing PO₂ during OP-PD

Process to densify 2212 wire before coil winding

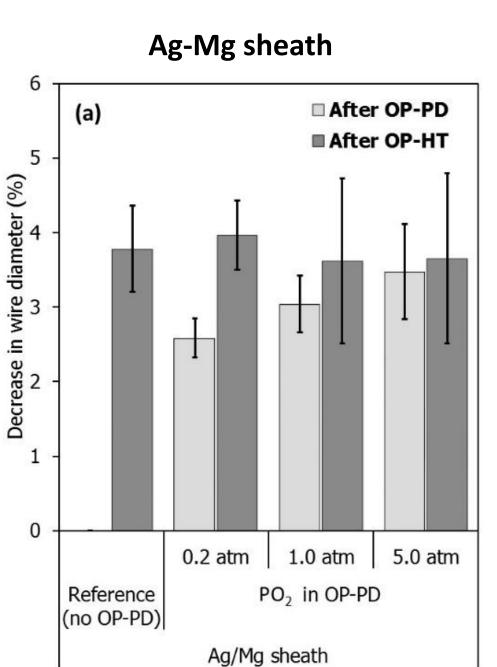
(a) <u>OP-PD:</u>

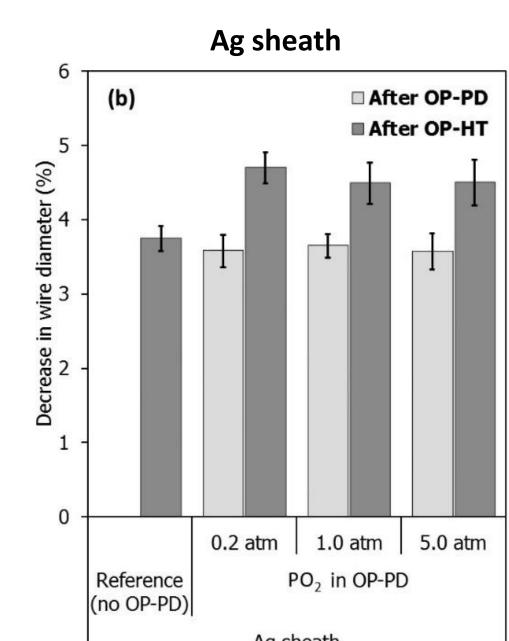
- 50 atm with $PO_2 = 0.2$, 1, or 5 atm
- Powder doesn't melt

Ø 1.2 mm Ag-Mg and Ag-sheathed wire

(b) Wire handling and coil winding:

- Diameter measurement of dense wire (winding over five 15 cm dia. pulleys)
- Dense wire was cut into four 50 cm sections and wound into 5, 10, 20 and 30 mm diameter coils.


(c) <u>OP-HT:</u>

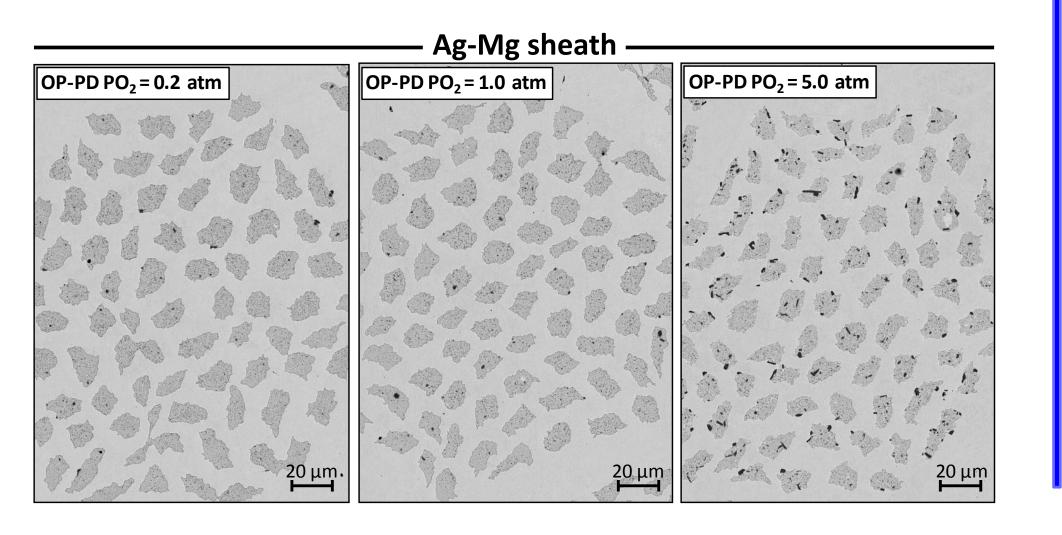

The coils of dense wire were sealed and **OP-HT** at 50 atm with $PO_2 = 1$ atm.

After 50 atm OP-PD

Successful process: after OP-PD wire shrinks by 0.7 % in **OP-HT**

Change in wire diameter

- Ag-Mg sheathed wire:
- OP-PD: $\Delta Ø = -3.1 \pm 0.6 \%$
- OP-HT: $\Delta Ø = -3.8 \pm 1.0 \%$

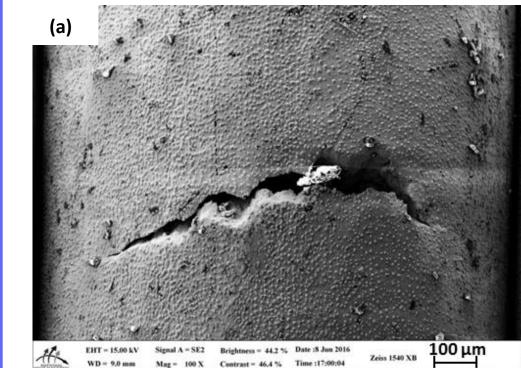

• $\Delta \phi_{\text{OP-PD}}$ - $\Delta \phi_{\text{OP-HT}} = 0.7 \%$

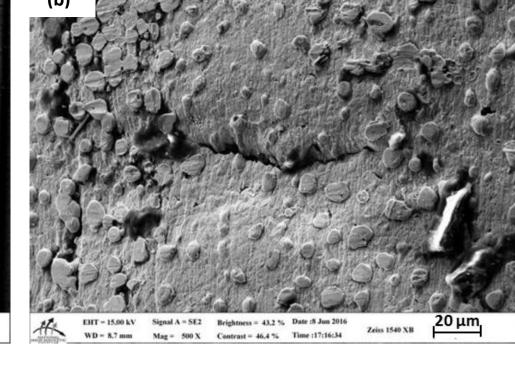
Ag sheathed wire:

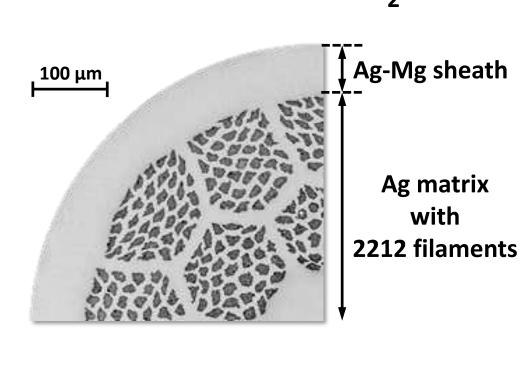
- OP-PD: $\Delta Ø = -3.6 \pm 0.2 \%$
- OP-HT: $\Delta Ø = -4.6 \pm 0.3 \%$
- $\bullet \Delta \emptyset_{\text{OP-PD}} \Delta \emptyset_{\text{OP-HT}} = 1.0 \%$

2212 decomposition is observed after OP-PD with $PO_2 = 5$ atm.

 Similar results are observed with Ag-sheathed wire

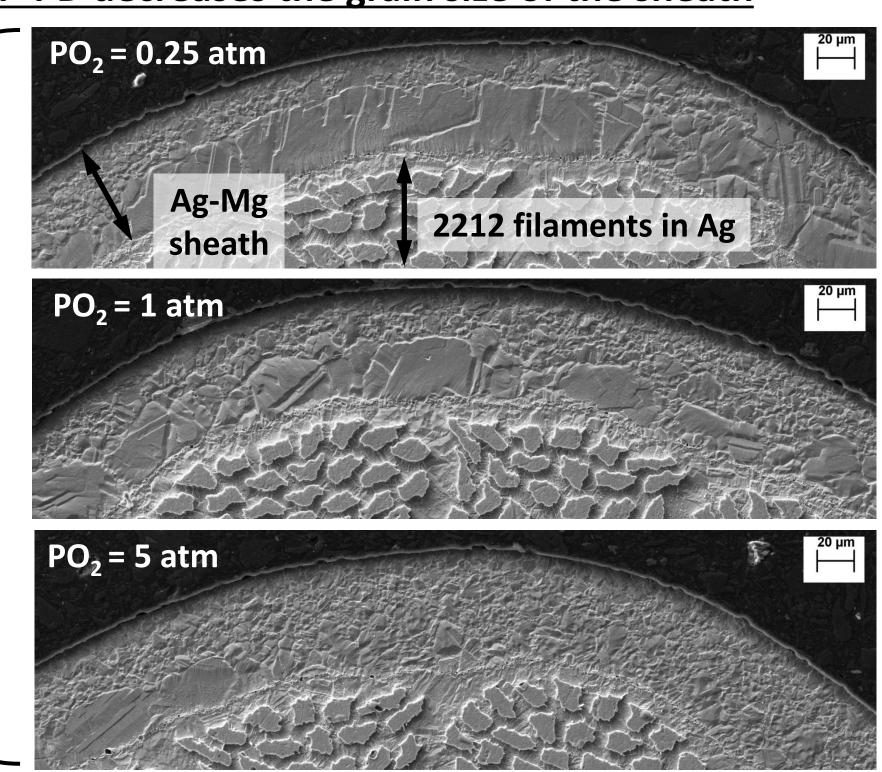

Dense wire winding ability depends on PO, during OP-PD


Dense Ag-Mg sheathed wire shows higher ductility with increasing PO₂ during OP-PD


	PO ₂ for OP-PD	Can the OP-PD wire be wound into a coil?			Is the coil leak-free after OP-HT? Coil diameter (mm)				
Wire sheath		Coil diameter (mm)							
Sileaui		5	10	20	30	5	10	20	30
	Reference (no OP-PD)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
A = NA =	0.2 atm	No	Υ	Υ	Υ	*	Υ	Υ	?
Ag-Mg	1.0 atm	No	Υ	Υ	Υ	*	No	Υ	Y
	5.0 atm	Υ	Υ	Υ	Υ	No	Υ	Υ	Υ
	Reference (no OP-PD)	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Λ	0.2 atm	Υ	Υ	Υ	Υ	Y Y Y	Υ	?	
Ag	1.0 atm	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Y
	5.0 atm	Υ	Υ	Υ	Υ	No	Υ	Υ	Υ

* Coils were not OP-HTed

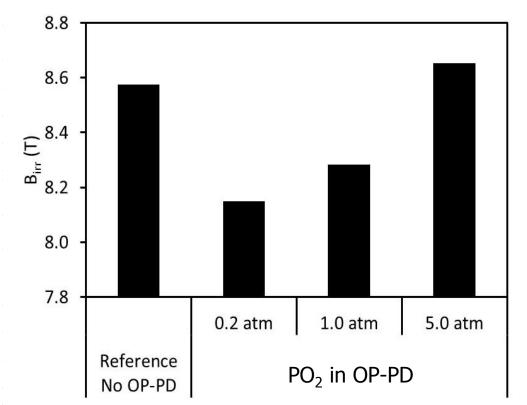
Macro and micro cracks form in sheath of dense Ag-Mg 2212 wire OP-PD with 0.2 atm PO₂



Increasing PO₂ during OP-PD decreases the grain size of the sheath

After OP-PD at different PO₂

- **Higher PO2 forms MgO** particle before Ag grain growth occurs in the sheath.
- MgO pins the Ag grains and slows down their growth
- Higher pO2 may just pull Mg and MgO to the surface due to higher activity of O

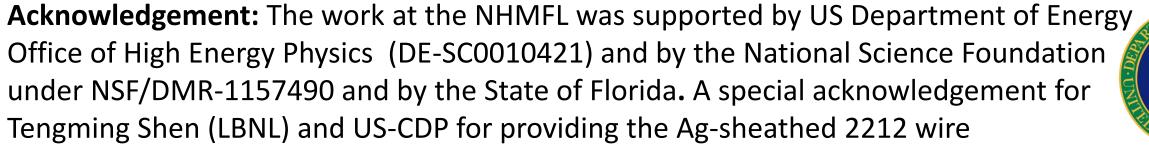

Scanning electron microscope images of chemically etched wire cross section

No J_c degradation (+22 % J_c with $PO_2 = 5$ atm during OP-PD)

Ag sheathed wire

Ag-Mg sheathed wire							
PO ₂ during	Δ J _C (%)						
OP-PD	Straight section	Curved section					
0.2 atm	-31.7	-38.0					
1.0 atm	2.1	-1.3					
5.0 atm	22.0	22.8					
PO ₂ during	J _C (A/mm ²)						
OP-PD	Straight section	Curved section					
Reference (no OP-PD)	4303.5	4262.9					
0.2 atm	2939.0	2667.7					
1.0 atm	4394.9	4249.1					
5.0 atm	5248.4	5282.9					

PO ₂ during	Δ J _C (%)				
OP-PD	Straight section	Curved section			
0.2 atm	-6.7	-8.3			
1.0 atm	3.0	7.9			
5.0 atm	9.3	3.7			
PO ₂ during	J _C (A/mm ²)				
OP-PD	Straight section	Curved section			
Reference (no OP-PD)	4219.8	4266.5			
0.2 atm	3935.1	3870.1			
1.0 atm	4346.6	4555.0			
5.0 atm	4614.3	4376.2			


- J_C of wires OP-PD with $PO_2 = 1$ atm are identical
- Ag-sheathed wire shows no clear dependence on PO₂ during OP-PD
- Ag-Mg-sheathed wire shows a strong increase in J_C with increasing PO₂

Ag-Mg sheathed wire shows an increase in H_{irr} after 5 atm PO₂ OP-PD +OP-HT suggesting an increase in oxygen concentration in 2212

Conclusions

- > Densification before winding process has been successfully demonstrated:
 - Decrease in wire diameter during OP-HT is reduced from 3.8 % to 0.7 %.
 - Dense wire can be wound into coils as small as 20 mm in diameter without cracking or 2212 leaks after OP-HT.
 - J_C is not decreased by the process (PO₂ = 1 atm)
- > Ag-Mg-sheathed wire:
 - increasing PO₂ in the OP-PD increases J_c significantly (up to 22% with PO₂ = 5 atm compared to wire without OP-PD).
 - The increase in J_c with increasing PO₂ in OP-PD seems to be linked to the oxide dispersion strengthening mechanism (that varies with PO₂)
 - OP-PD with 5 atm PO, might be added to Ag-Mg sheathed 2212 coil OP processing since it to increased J_C by up to 22 % in these experiments.
- \triangleright Ag-sheathed wire: Densification and J_c do not vary with PO₂ used in OP-PD.

