

EFFECT OF THE Sn CONCENTRATION IN BRONZE MATRIX ON THE PRE-REACTION FORMATION OF Nb₃Sn LAYERS IN BRONZE-PROCESSED SUPERCONDUCTING STRANDS OF DIFFERENT DESIGN

Irina Deryagina, E. Popova, E. Patrakov, E. Valova-Zaharevskaya, I. Abdyuchanov*

M.N. Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia *A.A. Bochvar High-Technology Research Institute of Inorganic Materials (JSC VNIINM), Moskow, Russia

The goal of the present work is to study and analyze the effects of Sn concentration (14 or 16 %Sn), the mode of Ti-doping and the shape of Nb filaments on the thickness of the "spurious" layers of pre-reaction Nb₃Sn grains in the state before diffusion annealing. All samples of wires were produced and tested at Bochvar Institute (VNIINM), Moscow, Russia;

THE SAMPLES OF Nb₂Sn₂BASED MULTIFILAMENTARY WIRES

Sample	Number of filaments	Strand's Ø, mm	Filament's size, μm x μm	Matrix	Shape of filamens	Stabili-zing Cu, %	Barrier material
W16C	34725	0.8	2.1 x 3.7	Cu-16Sn-0.24Ti	coupled	8.0	Nb-Ta
W16Z	1389	0.8	1.2 x 65	Cu-16Sn-0.24Ti	extended	8.0	Nb-Ta
BO-5	13212	0.82	2.1 x 3.7	Cu-14.6Sn-0.24Ti	coupled	42.6	Nb-Ta
BO-7	13212	0.82	2.1 x 3.7	Cu-14.0Sn	coupled	42.6	Nb-Ta

Short intermediate preliminary Heat Treatment (HT)

The HT at 500°C [1] was made after every 37-9% of cold deformation starting from a 17.5 mm strand's diameter. The total duration of HT's time did not exceed 1 hour. The time of HT (t_{HT}) differs with the differing of strand's diameter (for example, $t_{HT} = 10$ min at $\emptyset = 17.7$ mm and $t_{HT} = 0.5$ min at $\emptyset = 0.8$ mm)

METHODS

Images were made by SEM (Inspect-F, FEI). The compositions of the matrix after HT were determined using the electron probe microanalysis (EPMA) method with Energy Dispersive X-ray spectrometer (EDX, FEI)

Sample W16Z

Extended Nb-filaments

Sample W16C

Coupled Nb-filaments

The Concentration of Sn (wt%) in the matrix after HT

L (µm)	W16C	W16Z	BO-7	BO-5
100	14.3 (14.3)	14.0 (13.5)	12.2 (11.8)	12.2 (10.0)
150	14.7 (13.7)	14.1 (13.5)	12.6 (11.9)	12.3 (9.8)
200	15.3 (13.6)	13.9 (13.3)	12.3 (11.4)	12.6 (11.3)
250	14.7 (13.8)	14.2 (13.5)	13.4 (11.8)	12.4 (11.4)
300	14.5 (13.8)	14.4 (13.7)		12.9 (11.0)
350	14.8 (14.2)	14.3 (13.8)		

L – the distance from Nb-barrier

Sn % inside sub-element

Sample W16Z

Central part of strand

Sample BO-5

Near Nb-barrier

Sample BO-7

Nb-barrier

Near Ta-ingot to Nb barrier

The characteristics of pre-reaction Nb₂Sn lavers

Sample	$oldsymbol{L^a}_{av}$, $oldsymbol{nm}$	$d_{max}^{b},$ nm	d _{av} c, nm
BO-5 ^c	105	33	25
BO-7	112	40	33
W16C	140	44	34
W16Z	200	58	46

^a Average width of layer; ^b Average grain size; ^c Maximal grain size.

CONCLUSIONS

- In the wires with coupled Nb filaments the average thickness of pre-reacted layers increases from 105 nm to 140 nm with an increase of the initial Sn concentration in bronze matrix from 14% to 16%.
- The thickest parasitic layers (200 nm) are formed in the strands with 16% Sn in matrix and extended spider-shaped Nb filaments.
- To minimize the parasitic layers formation the strands with more than 14% Sn in bronze matrix should be heat treated at temperature lower than 500°C or with shorter annealing times.

[1] E.I. Plaschkin, E.V. Nikulenkov, N.I. Salunin, A.K. Shikov, G.P. Vedernikov, V.S. Belyaev, O.V. Malafeeva, A.E. Vorobieva, A.G. Silaev. The method for manufacturing of composite superconductor based on Nb3Sn. RF Patent No 2152657, 2000. tp://bd.patent.su/2152000-2152999/pat/servl/servlet7e91.html Available: