3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks

M. Kapolka¹, E. Pardo¹, V. M. R. Zermeño², S. Zou², A. Morandi³, P. L. Ribani³, F. Grilli²
¹IEE Bratislava, Slovakia ²KIT-ITEP, Germany ³University of Bologna, Italy

Motivation
- 3D modeling not as mature as 2D
- Benchmarking & validation between different approaches necessary
- Investigation of magnetization of two geometries relevant for applications

Investigated problem
- Parallelepiped 10 mm x 10 mm x 1 mm
- External AC field in the xz plane, 200 mT, 30 degrees w.r.t. x, frequency 50 Hz
- Superconductor modeled as material with non-linear resistivity \(\rho(J) = \frac{\rho_c}{|J/J_c|^n} \)
- Stack represented by very large resistivity in the z direction
- Calculation of instantaneous power dissipation and magnetization cycles

Compared numerical models
- Minimum Electro-Magnetic Entropy Production (MEMEP) [1]
- H-formulation of Maxwell’s equations [2]
- Volume Integral Equation Method (VIM) [3]

MK and EP acknowledge the financial support of the Slovak research agency VEGA (contract number 2/0126/15).