Towards practical HfTi-nanoSQUID sensors

Sylke Bechstein, Claudia Köhn, Dietmar Drung, Jan-Hendrik Storm, Oliver Kieler, Viacheslav Morosh, and Thomas Schurig

For practical nanoSQUID applications, sensor designs are desirable which include sophisticated electronic functionalities for optimum performance. A feedback circuitry including transformers is used for linearization of the periodic flux-to-voltage characteristic. Excitation coils might be integrated enabling the investigation of magnetic properties of nano-sized samples, and rf-filters improve the robustness of the devices.

General structure and fabrication of the nanoSQUIDs

Planar nano-structures fabricated using e-beam lithography and chemicalmechanical polishing process steps, allow complex nanoSQUID layouts with up to 3 niobium layers.

lateral dimensions of SNS JJs

 thickness of HfTi barrier line width (SQUID loop)

SQUID loop inner diameter

150 nm x 150 nm to 260 nm x 260 nm

about 20 nm 200 nm

840 nm to 2.2 µm

Measurement setup

Magnetic flux noise, linearity and field tolerance are measured in flux-locked-loop mode (FLL) and 2-stage configuration with a SQUID series array (SSA) as cryogenic preamplifier.

Double-walled probe stick with

- nanoSQUID
- SQUID series array
- superconducting coil system consisting of a large solenoid and two identical inner coils nearly approaching Helmholtz coil geometry
- leads of coil system in He-gas

The SSA operates in magnetic fields of 100 µT in maximum and is therefore mounted approximately 6 cm away from the coil system.

Coupling transformers

- feedback, input or excitation lines are gradiometric and galvanically separated from the SQUID loop by a coupling transformer
- different types of transformers available:

 $0.05 \text{ mA/}\Phi_0 / 0.5 \text{ mA/}\Phi_0$ current sensitivity **Gradiometric coupling**

transformer (GCT)

current sensitivity* 2.9 mA/ Φ_0

* coupled to nSQUID series gradiometer

width of washer 10 µm

10 µm width of washer

C7 transformer

Bias reversal transformer

current sensitivity* 3.4 mA/Φ₀

20 µm

nSQUID parallel 🍑 gradiometer 50

Operation in dc magnetic fields

SQUID parameters degrade with applied magnetic field B — depending on the type of transformer

Magnetic flux noise

- increases with SQUID inductance L_{SQUID}
- independent of the type of transformer

 B_{\parallel} (mT)

 I_{coil} (mA)

T = 4.2 K

-30

nanoSQUID series array (nSSA)

current sensitivity* 0.15 mA/Φ₀

 lateral dimensions of JJs 150 nm x 150 nm 300 nm width of lines

 number of turns 4 (2 in Nb layers 1 and 3, each) width of washer 900 nm

number of single SQUIDs 64, 128, 256

input

www.ptb.de

Outlook

- Nb/HfTi/Nb nanoSQUIDs with high linearity available for experiments in dc and ac magnetic fields
- new devices under investigation,
- e.g. combination of susceptometer and nSSA
- at the moment we are testing further improvements:
 - implementing a third Nb layer to increase the coupling avoiding large JJs as vias by using the third Nb layer

[1] S. Bechstein, et. al., HfTi-nanoSQUID gradiometers with high linearity,' Applied Physics Letters 106, 072601 (2015). [2] S. Bechstein, et. al., Investigation of nanoSQUID designs for practical applications, Supercond. Sci. Technol. 30, 034007 (2017).

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Dipl.-Ing. Sylke Bechstein Working Group 7.23 **Cryoelectronic Measuring Systems** Abbestr. 2-12 10587 Berlin phone: +49 30 3481 7426 +49 30 3481 69 7426 e-mail: sylke.bechstein@ptb.de This work was partly supported by the DFG under Grant No. SCHU1950/5-1 and KI 698/3-1, and within the European Metrology Research Programme EMRP, which was jointly funded by the participating countries within EURAMET and the European Union.