4EP2-23: Critical current scattering in series arrays of HTS SQUIDs based on ion-damaged barrier Josephson junctions

Denis Crété¹, Eliana Recoba Pawlowski¹, Julien Kermorvant², Yves Lemaître¹, Bruno Marcilhac¹, Christian Ulysse³

LABORATOIRE

THALES

¹Unité Mixte de Physique CNRS-THALES, Univ. Paris-Sud, Univ. Paris-Saclay, Palaiseau, France ²THALES Com. and Security, France, ³Labo. Photonique & Nanostructures, CNRS, Marcoussis, France

Abstract

Characterization of scattering for an HTS Josephson junction (JJ) technology is usually based on critical current I_c (and normal resistance R_n) defined by the Resistively Shunted Junction (RSJ) model. Accounting for thermal noise e.g. using Ambegaokar and Halperin (AH) model [1] is necessary but time consuming and not always sufficient.

We propose the thermal noise voltage (TNV) criterion for the determination of critical current, using AH model. At $I=I_C$, < V > is related to the junction parameters I_C , R_n and $\gamma = hIc/2\pi k_B T$ where is the physical temperature. An empirical analytical function has been found to fit the normalized thermal-noise/voltage relation given by AH.

We present the results of the TNV criterion on JJ based on the ion damage barrier technology described in [2] and compare it to the usual "predefined voltage threshold" (PVT) method.

[1] Ambegaokar V. and Halperin B.J., Phys. Rev. Lett., 22,1364-1366 (1969) [2] App. Phys. Lett. 87, 102502 (2005); 89, 112515 (2006); 91, 142506 (2007); 91 262508 (2007).

Variation of the reduced « thermal noise voltage » η versus atan(γ). Crosses represent tabulated values, and the blue curve is the analytical approximation.

Application of TNV method

 $g_i = \Phi_0/(2k_BT_{noise})$; // with $T_{noise} = T_{physical}$ $V_{Thres} = R_n * I.* (1 - (2/\pi * atan(g_i * |I|)).^(1/0.63)).^(1/3.08)$ $I_C = -I(\text{find}(V \ge V_{Thres}, 1)); // < floor > value with sampling resolution$

Classical *I*_c determination methods

Fixed Voltage Threshold (FV): $I_C = I(V = V_{thres})$

- + Simple (typ. V_{thres} = 1 μ V)
- + For N JJ series array $I_C = I(N. V_{thres})$
- + widely used (easy comparison) - The extracted value of I_C is lowered by thermal noise
- In case of I_C scattering, TM essentially probes the JJ with the smallest critical current.

Ambegaokar & Halperin (AH):

- Adjust the full V(I) curve $V(I,I_C,R_n,T)$
- + No hypothesis made on any of the parameter $(T=T_{noise})$
- + In principle, applicable to JJ arrays, but ...
- Very sensitive to deviation from RSJ model (and scattering)
- Computation time is longer (and convergence is not guaranteed)

Ambegaokar & Halperin (limited to very small I_C):

 $I_C = f(T_1 R_{d0}/R_p)$ where R_{d0} is the dynamic resistance at I=0

- + Simple
- Not applicable when Josephson energy $> k_B T$

$$arctg\left(\frac{\Phi_{0}I_{c}}{2\pi k_{B}T}\right) = \frac{\pi}{2} \left(1 - \left(\frac{V(I_{c})}{R_{N}I_{c}}\right)^{3,08}\right)^{0,63}$$

- $I_C/T \sim \left(\frac{V(I_C)}{R_N I_C}\right)^{-3,08}$ when $\eta \to 0$
- But $I_C \sim (1 \eta)^{0.63}$ when $\eta \rightarrow 1$ instead of $I_C \sim 1 \eta$. It only impacts at high temperatures when the V(I) curves are nearly linear.

« Thermal noise voltage » (TNV) method

V(I) curves of RSJ model in reduced coordinates for different values of γ (Ambegaokar & Halperin). For each γ , only the point at $I=I_C$ is used

Application of TNV method: determination of R_n

Requires R_n : usually determined by the slope of V(I). However, a few JJ types do not allow this method, e.g. ion-damaged barriers \rightarrow Extrapolation of I(T) from above the Josephson coupling range (and of course below T_c).

Comparison of FV and TNV methods (on a collection of SQUIDs within same chip)

Fixed Voltage Threshold 8e-05 7e-05 3 6e-05 5e-05 4e-05 3e-05 2e-05 1e-05 T (K)

TNV method and scattering

The extracted I_c value for a series array is an average lying in the lower range of the $I_{\rm C}$ s of its constituants (but larger than the minimum $I_{\rm C}$, due to the larger voltage threshold).

Conclusion

The expression we propose for the voltage measured at the terminals of an RSJ device biased at its critical current (TNV)

- analytical (fast),
- accurate (to within ~1% for a purely RSJ device),
- « tunable » with 2 parameters,
- useful for critical current determination from experimental results (provided R_n and T are known),
- basically robust against noise,
- applicable when either I_c =0 or when the noise is very small.

It can be applied to series, parallel and 2D arrays of JJ.

Scattering in JJ parameters results in a weighted average of the critical current. This « average » is useful for choosing the bias point for operation of an array.