

Simulation of a Quench Event in the Upgraded High-Luminosity LHC Main

Dipole Circuit Including the 11 T Nb₃Sn Dipole Magnets

A. M. Fernandez Navarro^{1*}, M. Maciejewski¹, A. P. Verweij¹, L. Bortot¹,

M. Mentink¹, M. Prioli¹, B. Auchmann², S. Izquierdo Bermudez¹, E. Ravaioli³, and S. Yammine¹ ¹CERN, Geneva, Switzerland; ²Paul Scherrer Institute, Villigen PSI, Switzerland; ³Lawrence Berkeley National Laboratory, Berkeley, EE. UU.

11 T Double-aperture dipole magnet (MBH)

Baseline quench heater strips

configuration

Simulated magnetic field map

Introduction

Two out of eight main dipole circuits will be reconfigured in the coming LHC upgrade by replacing one standard 14.3 m long, Nb-Ti based, 8.3 T dipole magnet by two 5.3 m long, Nb₃Sn based, 11.2 T magnets (MBH). The modified dipole circuits will contain 153 Nb-Ti magnets and two MBH magnets, connected to an additional trim power converter. These modifications imply a number of challenges from the point of view of the circuit integrity, operation and quench protection. The simulation of this complex non-linear system addresses a multi-physics and multi-scale problem with interdependences among the subsystems.

Upgraded RB circuit

System Modeling

Simulation Scenarios

Parameters and Operating Conditions		
Unit	At plateau	At ramp-up
kA	12.85	6
A/s	0	10
Α	34	- 250
ms	3	27
ms	10	
ms	1	
mΩ	100	
V	6	
	Unit kA A/s A ms ms ms	Unit Plateau kA 12.85 A/s 0 A 34 ms 3 ms 1

Co-Simulation Results

Quench in a MBH magnet and FPA at current plateau

Calculated initial hot-spot temperature under adiabatic conditions: 326 K

Conclusions

The electro-thermal behavior during a quench event and

the mutual influences between the quenched magnet and

the electrical circuit have been analysed using the STEAM

The results show a safe fast power abort of the system in

the event of a quench in one of the MBH magnets. The

180 A peak current in the MBH trim circuit is below the

design limit of 250 A. The hot-spot temperature in the

MBH magnets reaches 326 K, which is below the

These results support the validation of the correct

co-simulation framework.

maximum allowed peak of 350 K.

functioning of the reconfigured RB circuit.

Quench in a MBH magnet and FPA at current ramp-up

EUCAS 2017

Authors would like to thank Sara Marie Ambjørndalen from CERN, and Sebastian Schops and Idoia Cortes Garcia, from T.U. Darmstadt, for their contribution to the

STEAM project.

Outlook

The STEAM framework, together with the models presented, will be used to study other aspects of the upgraded RB circuit, such as:

- Magnet and circuit behavior in case of a quench in an adjacent MB magnet to the MBH assembly.
- Power abort of the 11 T trim PC without a general FPA of the main circuit.
- Influence of electromagnetic waves on the functioning of the Quench Detection System.

