In this paper, we propose a new time-frequency based analysis method that monitors the state of the high temperature superconducting (HTS) cable system in a real-time manner and detects the current imbalance of HTS cable system. The new time-frequency based method utilizes the cross Wigner-Ville distribution (XWVD) to analyze the time-frequency localized phase difference (TFLPD) of the reflected signal, which varies depending on the insulation characteristics of the HTS cable system. Also, a real-world AC 22.9 kV 50 MVA HTS cable system and current source are used to validate the performance of the new monitoring method in order to detect current imbalance phenomenon.

Introduction

- **Needs for HTS Cable Diagnosis**
 - Limitations for long-distance transmission
 - The brittleness of the HTS cable material
 - Critical points of superconductivity
 - A great increase in resistance when a quench occurs
 - Power shortages due to failures of power system

- **Background**
 - The localized impedance change
 - Defects from segments of HTS cable
 - Cryogenic failures
 - Detection technique based on the reflection of waves at the impedance discontinuity

- **Time-Frequency Domain Reflectometry (TFDR)**
 - The new methodology which has advantages of both TDR and FDR
 - Analysis on both time domain and frequency domain
 - Time-frequency cross-correlation value
 - The methodology considering physical characteristics of HTS cable
 - Optimization of the reference signal
 - Gaussian envelope chirp signal

- **TFDR System**
 - Time-frequency analysis: Wigner Ville distribution
 - Up-chirp signal / Down-chirp signal
 - Attenuation and dispersion of propagated signal
 - TFDR system: AWG, DPO and signal processing system

- **Experimental Setup**
 - Unbalanced Three-Phase Current
 - A real-world 22.9 kV HTS cable system consists of two cables of different lengths (270 m and 150 m), a joint box to connect two cables, and two terminations.
 - The fault is formed in the shielding layer at the front of the phase-A joint box.
 - The current imbalance phenomenon

- **Previous Research**
 - In order to provide a location to test the capability to detect and locate failure, on the HTS cable, the PPLP is cut.
 - As shown in Fig. 5(b), the terminal of the HTS cable is easily detected at approximately 7 m, whereas the magnitude of the reflected signal at the fault location is so small that the point of expected fault is difficult to detect.
 - Note that the value of the time-frequency cross-correlation has the local peak point at the reflected point.
 - The performance of the diagnostic method needs to be tested and evaluated using a real-world HTS cable system.

- **Results & Discussion**
 - The voltage of TFDL varied overall.
 - It is still difficult to identify the cause and the location of the failure / current imbalance.
 - The heat of the joint box is measured first by the temperature sensor on the rear side of the joint box according to the flow of the liquid nitrogen.
 - Both the cross-correlation change rate and the TFLPD react immediately.

 - The cross-correlation change and the TFLPD are varied only in the result of the phase-A cable, not in the result of other two phases.
 - TFLPD improves the conventional TFDR and is less susceptible to noise.
 - The monitoring technology of the HTS cable system is expected to be used as a diagnostic tool to detect and localize the fault in a real-time manner.

- **Conclusion**
 - We propose a monitoring method to select the problematic power cable and localize the fault within the cable in a real-time manner. In order to validate the efficacy of the method, 22.9 kV three-phase HTS cable system with the emulation of malfunction on the joint box is utilized. As a result, the temperature sensor and the conventional diagnostic methodologies detect an accident after a delay of about 1 to 5 minute, while TFLPD can immediately detect the problematic cable and find the cause of the fault.
 - It is expected that the TFLPD analysis can be used as a monitoring method to check the state of the HTS cable system and prevent the quench phenomenon in a real power system with the conventional TFDR methodology.
 - Furthermore, the diagnostic method as a smart grid technology will enable the HTS cable system to carry out self-diagnosis and advanced protection of connected power systems.

Acknowledgment

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Ministry of Science, ICT & Future Planning, #NRF-2017R1A5A1014947. Also, this research was supported by Korea Electric Power Corporation Research Institute.

Reference