

Discharge mechanisms in liquid nitrogen – breakdown field strength of gaseous nitrogen

N. Hill^{1*} and M. Kurrat¹

¹Technische Universität Braunschweig | Institut für Hochspannungstechnik und Elektrische Energieanlagen *n.hill@tu-braunschweig.de | Phone +49 (0) 531 391 7785

Introduction

- Breakdown mechanism of liquid nitrogen (LN₂) not yet completely determined but necessary for design of HTSL-systems
- Vapor bubbles already identified as major influence on breakdown voltage and possible breakdown initiation
- Disguised gas breakdown as potential breakdown process
- Further discussions require knowledge of electric field strength in cryogenic gaseous nitrogen
- More accurate calculative prediction of breakdown voltage of HTSL-system with knowledge if breakdown occurs according to Streamer or Townsend mechanism

Measurement results

Breakdown field strengths (determined by simulation with \hat{U}_{BD}):

Measurement setup and procedure

- AC breakdown tests are done for:
 - Quasi-uniform and non-uniform field
 - Nitrogen gas at room temperature (GN₂) and boiling temperature of LN₂ (CGN₂)
 - At ambient pressure
 - Electrode gap 1 4 mm
- In a closable open bath cryostat
- Above LN₂ volume

- Gas-temperature measured prior to AC tests in dependence of LN₂level
- Measurements start when LN₂-level reaches a defined distance to the surface of the bottom electrode
- Constant voltage ramp with 200 V/s (GN₂) and 500 V/s (CGN₂) till breakdown, at least 22 breakdowns for each parameter set

Breakdown voltage \hat{U}_{BD} = Peak voltage of half cycle before breakdown

Simulation results

- With measured \hat{U}_{BD} simulations (electrostatic, 2D rotationally symmetric) of electric field strength distribution E(r, z) are done
- Maximum electric field strength = breakdown field strength $\hat{E}_{BD,max}$
- Gas constants A and B (e.g. Paschen's law) are adapted for cryogenic nitrogen (= C & D) by relating them to gas density ρ instead of pressure p
- With E(r, z) and gas constants, the primary ionization coefficient α along electric field lines is calculated:

 $\alpha(E) = A \cdot p \cdot \exp(-B \cdot p / E) \implies \alpha(E) = A' \cdot \rho \cdot \exp(-B' \cdot \rho / E)$

• Integration of α along electric field line yields factor k:

$$= \int \alpha dx \quad \Longrightarrow \quad 2.5 < k_{Townsend} < 14 < k_{Streamer} < 18$$

Gap distance in mm

Conclusion

- Breakdown voltages for quasi-uniform field in GN₂ and CGN₂ follow Paschen's law
- Breakdown field strengths for quasi-uniform field are in agreement with literature, thus values for non-uniform field are assumed as utilizable
- In GN₂: Streamer and Townsend mechanism are possible
- In CGN₂: Townsend seems to be the primary breakdown process

Field	in mm	in kg/m ³	in kV	in kV/mm	in 1/mm	k
Quasi-uniform	1	4.320	11.7	11.7	4.1	3.5
	2	4.352	21.1	10.6	2.1	3.4
	3	4.353	31.5	10.5	2.1	4.8
	4	4.353	42.2	10.6	2.2	6.7
	1	1.157	5.1	5.3	11.7	10.6
	2	1.163	9.0	4.5	7.1	12.2
	3	1.154	12.2	4.1	4.9	12.2
	4	1.154	15.2	3.8	3.6	11.6
Non-uniform	1	4.609	13.0	14.4	8.6	4.8
	2	4.663	22.9	14.1	7.3	4.6
	3	4.764	30.9	14.0	6.2	3.6
	4	4.662	39.1	14.4	8.3	4.8
	1	1.162	8.8	9.8	30.1	35.6
	2	1.172	13.1	8.1	43.8	49.9
	3	1.170	16.1	7.3	33.0	39.5
	4	1.170	18.9	7.0	29.8	35.0

Density

 \hat{I}

■ k for CGN2 between 3.4 – 6.7 → Townsend mechanism

k for non-uniform field and
GN2 very high; but with lowest
measured breakdown voltage
k = 13.6 - 17.8

 k for GN2 between 10.6 – 17.8
→ Transition from Townsend to Streamer and Streamer mechanism