Cryogenic considerations for cooling SC links and application to the High-Luminosity LHC

D. Berkowitz Zamora. S. Claudet and A. Perin - CERN, Switzerland

Introduction

- > Superconducting (SC) magnets in particle accelerators can be powered remotely through SC links.
- Overcomes limitations in space and radiation;
- Allows installation in more favourable areas.
- > The LHC has 5 SC links (4x 76 m and 1x 517 m), and new 100 m links are planned for the HL-LHC.
- > When defining the cooling of a SC link, it is essential to integrate the link in the cryogenic infrastructure of the facility:
- First, identifying the main driving parameters defining the cooling of the SC link.
- Then, assessing their impact on the cryogenic infrastructure in terms of cooling power and economic significance.
- > This poster presents:
- An overview of some main cryogenic considerations.
- Introduction to the cooling regimes of a SC link.
- A parametric study, with focus on cooling schemes applicable for the HL-LHC.

Frame of this study:

- For accelerator magnets (currents in kA; LTS < 5K).
- Presence of a large cryogenic system.
- ➤ Magnet-to-Link splices with T<5.5 K.
- Considers only hybrid current Leads (with HTS).
- > Not treated: fabrication technologies; physical or mechanical properties of SC cables.

Main Considerations and Choices

Cooling Regimes

SC Material and Flow Scheme Configuration (Parametric Study)

warm

outlet

Cooling Interfaces

Consumption of cooling circuits in terms of equivalent cooling power at 4.5 K for 1 g/s:

Flow scheme matrix

Investigated parameter space

- Cable material (Magnet-side configuration): NbTi, MgB2, HTS;
- Current-lead flow: 2.5, 5.0, 7.5 g/s;
- Heat load on SC link (incl. splices): 0 - 1000 W;
- Bypass line (Feed-box side configuration): warm outlet, cold outlet, cold inlet / outlet;
- SC link with thermal shield or without thermal shield.

Chosen helium properties at the Inlet/Outlet of the superconducting link.

	Cable material	NbTi	MgB2	HTS
Inlet	Temperature [K]	4.5	4.9	20.0
	Temperature [K] Pressure [bar]	3.0	1.8	1.3
Outlet	Temperature [K] Pressure [bar]	4.9	17.0	50.0
	Pressure [bar]	1.8	~1.8	~1.3

Required Cooling Power

Low-Load Link: **HL-LHC Baseline** <u>≥</u> 0.4 0.3 0.2 Cooling 0.0 HTS Heat load on SC link [W]

High-Load Link:

II)

For unshielded link with $\dot{m}_{\rm CL}$ = 5 g/s. Shield consumption is 0.11 W@4.5K per Watt on the shield.

A: HL-LHC project baseline; a: no inlet; b: cold inlet; c: warm outlet; d: cold outlet.

HL-LHC

- Project baseline: MgB₂ cable; 100 m long; $\dot{m}_{\rm CL}$ = 5 g/s and warm outlet only.
- Recent changes resulted in the re-allocation of the electrical feed-boxes to areas with cryogenic interfaces \rightarrow inlet/outlet solution is now possible.

Economical Implications

HL-LHC

1.3 bar

HTS

 Adding a cold inlet gas supply saves 330 kCHF per link with respect to the baseline configuration.

Evaluation for link variants for the HL-LHC with cold input/output bypass and $\dot{m}_{\rm CL}$ = 5 g/s.

	Cable material	NbTi	MgB_2	HTS
Cooling power	Shielded	355	283*	275
	-	1838	594	220
Cryogenic Cost [kCHF]	Shielded	533	425*	413
[kCHF]	Unshielded	2757	891	330

* HL-LHC baseline (with warm bypass only): 503 W@4.5K and 755 kCHF.

Cryogenic Cost = Operational + Capital = 1.5 kCHF/W@4.5K

Operational cost ~ 1.0 MCHF for 10 years:

- Refers to electrical consumption.
- Electricity = 60 CHF/MWh; COP = 250 W/W; time = 65 000 h. Capital cost ~ 0.5 MCHF:
- Price <u>adjustment</u> for a new plant of 18 kW@4.5K.

Conclusion

- > The cooling is driven by the current-leads flow or by the links flow.
- the cooling impacts scheme efficiency.
- \triangleright For **low-load links** with α < 1:
- Cold inlet bypass has more impact than the choice of SC material.
- > For high-load links:
- Significant gain by using a cold inlet/outlet bypass line.
- ➤ For NbTi, MgB₂, HTS:
- NbTi requires a low-load link.
- MgB2 & HTS, open the possibility of links with higher heat loads (unshielded!).
- > A SC link is an integral part of a larger infrastructure.
- Its design has economic implications at the refrigerator level.
- Technological choices shall be assessed against their impact on the entire system.