Poster: 4LP3-09

Design and Test of a double pancake coil wound by HTS Roebel cable

Peng Song a, Jiahui Zhu b, Timing Qu a, Panpan Chen b, Ming Qiu b

^a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China b China Electric Power Research Institute, Beijing 100192, China

21 Sep 2017

Introduction

When the HTS SMES system charges or discharges current rapidly, it may have two problems:

- Numerous magnet turns number
- **Current and Magnetic field** distribution among conductors

- Large induced E.M.F.

 Large superconducting **AC loss**
- Insulation breakdown
 Thermal quench

To solve these two problem, the probable solution is: HTS Roebel cable

- **Conductors transpose** position regularly
- 1. Conductors in parallel 1. Reduce number of magnet turns
 - **Averaging magnetic environment** on different conductors
- Lower inductance

In this work, a HTS Roebel cable double-pancake coil module was manufactured and its I_c was measured at 77 K. This coil module was designed for toroidal SMES using conduction cooling method.

Coil General Parameter

Parameter \ Item	Value \ Statement
Coil Type	Double Pancake
Total length of cable	< 10 m
HTS material	ReBCO (Fujikura, Japan)
Number of cable Strands	10
Transposition Length of Roebel Cable	300 mm
Trun number of coil	8
Inner Diameter of winiding	340 mm

This Roebel cable was manufactured by General Cable Superconductor, Ltd, New Zealand.

Coil Dimension

Current Terminal: PCP (Protective Copper Plate)

Ideal additional resistance of coil due to PCP (Soldering material: 60Sn-40Pb)

77 K: $[2.2 \text{ n}\Omega \text{ (solder layer)} + 4.2 \text{ n}\Omega \text{ (PCP)}] \times 2 = 12.4 \text{ n}\Omega$

PCP Dimension:

as long as Roebel cable transposition length for ensuring good contact with every strand

PCP merits:

- Protect the ReBCO layer when need soldering to external current source
- Make current distribution homogeneous

PCP position picture

One coil has

two PCPs

Structure Design Detail

Bobbin & PCP Holder: *epoxy resin for insulation* Middle & Cover Pad: Al alloy for cooling conduction; carve slots to avoid eddy current **Conduction Block:** Al alloy, for supporting and cooling conduction

Reinforcing Strip: stainless steel, for reinforcing the coil winding strength

Impregnation: paraffin wax, avoid delamination and maintain thermal contact between conductors

Coil picture

20 K: [0.3 nΩ (solder layer) + 0.34 nΩ (PCP)] \times 2 = 1.28 nΩ 1. Measurement Aglient 6671 A Aglient 6680 A Keithley2400

Measurement Instruments

Current source

I_c measurement result

The Roebel cable coil I_c: **1025** A (77 K, self field, 1 μV/cm criteria)

Voltage Probe soldered on PCP

Probe 2 & 3 were chosen for four-probe measurement (as shown in above segment)

Central flux density

The PCP has little interference on I_c measurement

Presenter: Peng Song, PhD Phone: +86 10 6279 4261

Mobile: +86 13264258278

Email: songp@mail.tsinghua.edu.cn