High Current REBCO-CORC Bus Bars for Large Detector Magnets

T. Mulder^{1,2}, A. Dudarev¹, H. Silva¹, M. Dhalle² and H.H.J. ten Kate¹

- 1. CERN, Genève, Switzerland
- 2. University of Twente, Enschede, the Netherlands

UNIVERSITY OF TWENTE.

Motivation

CORC CICC Bus Bar Design

	ATLAS Bus Bars	Future Normal Bus Bars	Future SC Bus Bars
Current (kA)	20	80	80
Material	Aluminium	Aluminium	REBCO CORC
Length (m)	300	1000	1000
Cross-section (cm ²)	400	1600	200
J _{stabilizer} (A/mm ²)	0.5	0.5	10
Mass (kg)	33.000	430.000	80.000
Voltage @ Operation (V)	8	<u>28</u>	-
Power @ Operation (kW)	160	2240	_

Conclusion

- ✓ CORC Six-Around-One Bus Bar is in development.
- ✓ Bus bar can be scaled up to 100 kA depending on detector magnet size.
- ✓ CORC bus bar greatly reduces power converter requirements.
- ✓ CORC bus bar reduces weight of the bus bars.
- ✓ Bus bars are protected by the fast-dump resistor of the magnet system.

Requirements

2017 – 4T/10m_bore Main + Forward Solenoids – 30 kA & 14 GJ

- The bus bars need to carry 80 kA at 50 K and 1 T.
- Bus bars are cooled by the return gas of the magnet's liquefier.
- Bus bars require flexibility for opening and closing of the magnet system.
- Survive quench in the detector magnets.
- Survive quench in bus bar itself.
- Survive cooling failure.

Thermal Stability

- Hot spot temperature in bus bar in case of a quench in the 80 kA Twin Solenoid magnet is about $\underline{150-300~K}$, the fast-dump is initiated and the bus bars are heated without heating the magnet (R_Dump = $20~m\Omega$ -> 1600~V).
- The 30 kA / 14 GJ detector magnet allows less copper stabilizer or a lower dump resistor to achieve the same hot spot temperatures.

Expected performance of the CORC Six-Around-One Bus bar

Presented at EUCAS 2017, Geneva, Switzerland, 21 September 2017