

Electromechanical Design of a MW Class Wave Energy Converter with a HTS

Tubular Linear Generator

Hailian Jing, Naoki Maki, Tetsuya Ida, Mitsuru Izumi
Tokyo University of Marine Science and Technology

email: izumi@kaiyodai.ac.jp

Number: 4LP6-11

Date: 21/09/2017

Time: 10: 15 ~ 12: 15

Abstract

We have proposed a direct-drive wave energy converter (**WEC**) device with a high-temperature superconducting tubular linear generator (**HTS-TLG**) adopted, and compared the design results of the HTS-TLG to the conventional TLGs, which suggests clear advantages of the HTS-TLG.

In this paper, we focus on the mechanical structure of the WEC, the cryogenic cooling system of the HTS-TLG, and the relation between maximum output power and size of the heaving buoy. Besides, design results of a 2 MW HTS-TLG are compared to those of another counterpart, which verified that the proposed HTS-TLG has higher power density. In the end, induced voltage waveforms of the 2 MW HTS-TLG are plotted.

Conceptual Structure

Overall structure and working principle:

- Buoy-I is used to extract power from ocean waves, and is directly coupled to the translator of the HTS-TLG.
- Buoy-II is surrounded the outer armature part of the HTS-TLG to float the armature part in sea water, which is moored to seabed.

As wave moves, the buoy-I heaves up and down, driving the translator of the HTS-TLG, so the voltage is induced.

Cryogenic cooling system:

Input power of the cryocooler comes from the output power of the HTS-TLG. The output power also provides the exciting current to HTS coils.

Configuration of cryostat:

The ring-shaped HTS coils are arranged as three layers. Between the inner and the outer shells, there are GFRP pins with length of 6 mm.

Fig. 1. Conceptual structure of the WEC.

Fig. 2. Cross sectional view of a 1 MW HTS-TLG.

Maximum output power

The relation of maximum output power and the radius of buoy-I:

$$P_m = \pi^2 \rho g f_0 A^2 r^2 \cdot \sin 2\alpha$$

where P_m is maximum output power of the HTS-TLG, ρ mass density of sea water, g gravitational acceleration, f_0 wave frequency, A wave amplitude, and r is radius of the buoy-I.

$$\cos \alpha = v_{bm} / v_{sm}$$

where v_{bm} and v_{sm} are peak velocities of the buoy-I and waves, respectively.

Fig. 3. Variation of maximum output power with wave amplitude under different buoy radii.

Design Results

Table I Performance Comparison of a 2 MW HTS-TLG with a SCLG Proposed in [1].

Item	HTS-TLG	SCLG
Rated output power P_m (kW)	1000	640
Terminal voltage (V)	660	1010
Line current (A)	1750	732
Wave frequency f₀ (Hz)	0.4	0.3
Maximum stroke (m)	2.0	2.4
Maximum linear speed (m/s)	2.5	2.2
Generator length (m)	9.3	9.6
Length of SC wire (km)	17.5	27.4
Stator weight (ton)	20.4	18.5
Translator weight (ton)	6.8	3.0
Weight of generator with cryocooler W_g (ton)	28.2	21.5
P_m / W_g (kW/ton)	71	60

Features:

- Rated output power of the HTS-TLG is more than
 1.5 times than that of the SCLG.
- Length of these two linear generators is almost the same.
- The SCLG has a much lighter translator than the HTS-TLG. And the total weight of SCLG is about 3/4 that of the HTS-TLG.
- Power density (P_m / W_g) of the HTS-TLG is 18% higher than that of the SCLG.
- The HTS-TLG uses 17.5 km × 5 mm × 0.2 mm AMSC's HTS wires, much less amount of expensive HTS wires than the SCLG (less than 1/2), implying a substantial reduction of costs..

[1] O. Keysan, and M. Mueller, "A linear superconducting generator for wave energy converters," *in IET International Conf. on PEMD*, pp. 134, 2012.

Induced voltage

Fig.4. Time dependence of (a) buoy velocity; (b) electrical frequency of the HTS-TLG; (c) induced phase voltage under no-load condition; (d) 3-phase rectified voltage under no-load condition.

Conclusion

- 1) Conceptual structure is considered in the viewpoint of industrial application, including the cryogenic cooling system proposed.
- 2) The relation between maximum output power and size of the heaving buoy shows a reference to decide the output power and the buoy size.
- 🗽 3) Comparisons between the 2 MW HTS-TLG and a counterpart demonstrate advantages of the former in power density and reduction of HTS wires.