4MP2-02

Jc-B-T properties of MgB₂ film on Cu tape

Takumu IWANAKA¹, Toshiaki KUSUNOKI¹, Akiyoshi Matsumoto², Shigeru HORII³, Toshiya DOI³

¹ Research & Development Group, Hitachi, Ltd. ² Superconducting Wire Unit, National Institute for Material Science, ³ Graduate School, of Energy Science, Kyoto University

1. Motivation

Last year, we reported MgB₂ film deposited on 500 µm-thick Cu plate [1]. The superior *Jc-B-T* properties of the film suggested that thin film MgB₂ will be advantageous for superconductor tape and coil applications under high magnetic field. The next step is depositing MgB₂ film on thin Cu tape to increase the engineering critical current density Je. We deposited MgB₂ film on 40 µm-thick Cu tape and measured *Tc*, *Jc*-*B*-*T* and *Je*-*B*-*T* properties.

Jc of films on Cu plate and tape

• $B \perp$ substrate plate : 7,700 \rightarrow tape : 1,4000 A/mm² @ 20 K, 5 T •*B* // substrate plate : 5,700 \rightarrow tape : 2,200 A/mm² @ 20 K, 5 T

2. Experimental method

MgB₂ films were deposited by co-evaporation of boron and magnesium. B was evaporated by EB, while Mg was evaporated by effusion cell.

Fig.3 *Jc-B-T* properties

Je of films on Cu plate and tape • The thickness of substrate plate : 500 μ m \rightarrow tape : 40 μ m •B \perp substrate plate : 150 \rightarrow tape : 2,950 A/mm² @ 20 K, 5 T • *B* // substrate plate : $110 \rightarrow \text{tape} : 460 \text{ A/mm}^2 @ 20 \text{ K}, 5 \text{ T}$

3. Evaluation method

Critical current density : 4-probe resistance measurement

Magnetic susceptibility : SQUID flux meter

Cross-section structure : TEM and STEM

Surface structure : SEM

4. Results

 MgB_2

Cu tape

Tc of MgB₂ film was almost same on Cu tape and plate. Crystal orientation of film on tape got worse than plate.

CP: Cryo-pump

Fig.5 TEM image of cross-section.

Cause of *Jc* change • $B \perp$ substrate : *Jc* improved pinning force improvement > crystal orientation degradation

• $B \perp$ substrate : *Jc* degraded pinning force improvement < crystal orientation degradation

B // tape **Fig.6 Overview figure of pinning center (MgO_x)**

Fig.2 Surface SEM images of MgB₂ films on (a)Cu plate and (b)Cu tape

5. Conclusions

We deposited MgB₂ film on thin Cu tape and measured *Tc*, *Jc*-*B*-*T* and *Je-B-T* properties.

(1) Tc of film on tape was 33.5 K, equivalent to that of film on plate. (2) Je at 20 K, B=5 T was 2,950A/mm² in the $B \perp$ substrate direction and 460 A/mm² in the *B* // substrate direction. (3) Jc of film on tape at 20 K, 5 T improved in $B \perp$ substrate direction and degraded in *B* // substrate direction than that of film on plate due to

existence of MgO_x.

6. References

[1] T. Kusunoki, et al. ASC 2016, 3MPo2B-10 (Sep.2016, Denver, USA)