

13th European Conference on Applied Superconductivity

A comparative study of new Ge-based additions to MgB,

D. Batalu¹, S. Ciuca¹, R.E. Dumitrescu¹, G. Aldica², S. Popa², M. Burdusel², P. Badica² Contact: dan_batalu@yahoo.com

> ¹ Metallic Materials Science, Physical Metallurgy, University POLITEHNICA of Bucharest, Romania ² Lab. of Magnetism and Superconductivity, National Institute of Materials Physics, Magurele, Romania

A. Background

Different Ge-based additions [1-4] were shown to improve the superconducting functional characteristics of MgB₂, such as the critical current density (J_c) and the irreversible magnetic field (H_{irr}) . Additives of Ge, GeO₂, Ge(OM), GeTe were tested and results are compared. All samples show a critical onset temperature of 37-39 K. For each additive we obtained an optimum starting composition (x= 0.005 for Ge and GeO₂ additions, and x=0.0014 for $Ge_2C_6H_{10}O_7$ addition).

[1] Dan Batalu, G. Aldica, S. Popa, L. Miu, M. Enculescu, R.F. Negrea, I. Pasuk, P. Badica. Scripta Materialia (2014) 82: 61–64. [2] Dan Batalu, G. Aldica, M. Burdusel, S. Popa, M. Enculescu, I. Pasuk, D. Miu, P. Badica. J Supercond Nov Magn (2015) 28:531–534.

[3] Dan Batalu, G. Aldica, S. Popa, A. Kuncser, V. Mihalache, P. Badica. Solid State Sciences (2015) 48:23–30. [4] Dan Batalu, G. Aldica, P. Badica. *IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY* (2016) 26:7100104 (4 p).

Raw powders and compositions were:

- (1) MgB₂ (99.5 % purity, 1-2 μ m, decomposition temperature T_{dec}=890 °C, Alfa Aesar), Ge (99.999 % purity, 152 μ m, melting point T_m= 937 °C, Alfa Aesar): MgB₂Ge_x, x=0 (a), 0.005 (b), 0.01 (c), and 0.03 (d) (Fig. 1).
- (2) MgB_2 (Alfa Aesar), GeO_2 (99.999%, 14.3 μ m, $T_m = 1086$ °C, Alfa Aesar): MgB_2 (GeO_2)_x, x=0 (A), 0.005 (B), 0.01 (C), and 0.03 (D) (Fig. 2).
- (3) MgB_2 (Alfa Aesar), $Ge_2C_6H_{10}O_7$ (99.7%, $T_{dec}=320$ °C, Alfa Aesar): $MgB_2(Ge_2C_6H_{10}O_7)_x$, x=0 (MgB_2), 0.0007 (GEP0.7), 0.0014 (GEP1.4), 0.0025 (GEP2.5), 0.005 (GEP5), 0.015 (GEP1.5) (GEP1.5) (GEP1.5). (4) MgB_2 (Pavezyum, Turkey, purity >95%, particle size ~30 nm, product number PVZ-n MgB_2 -008), $OM=Ge_2C_6H_{10}O_7$ (RGe* – Alfa Aesar, 99.7%, $T_{dec}=320$ °C), RGe** (Asai Germanium Research Institute, Japan), PGe (Asai), SP (Asai): MgB₂(OM)_{0.0028} (Fig. 4).
- (5) MgB₂ (Pavezyum), crystalline GeTe, amorphous Ge20Te80 (synthesized at University of Pardubice, Faculty of Chemical Technology, Czech Republic): MgB₂(Ge_xTe_{1-x})_{0.01}, x=0.5, and 0.2 for GeTe, and Ge20Te80, respectively (Fig. 5).

The powders were mixed in an agate mortar and sintered by SPS (FCT Systeme GmbH – HP D 5, Germany) for 3 minutes at 1150 °C, under a uniaxial pressure of 95 MPa. During sintering secondary phases formed: MgO, MgB₄, Mg₂Ge, and MgTe. J_c (Fig. 1-5.a, b) was calculated based on Bean relation, and by using m(H) loops. H_{irr} was determined for the 10² A/cm² criterion (Fig. 1-5.c). m(T) measurement are presented in Figs. 1d-5.d.

Fig. 1. Critical current density vs. magnetic field of SPSed samples at 5 K (a) and 20 K (b), H_{irr} (c), and ZFC m(T)/m(5K) (d) for Ge added MgB₂ (Alfa Aesar) [1, 2].

Fig. 2. Critical current density vs. magnetic field of SPSed samples at 5 K (a) and 20 K (b), H_{irr} (c), and ZFC m(T)/m(5K) (d) for GeO_2 added MgB_2 (Alfa Aesar) [1, 3].

(b), H_{irr} (c), and ZFC m(T)/m(5K) (d) for $Ge_2C_6H_{10}O_7$ added MgB_2 (Alfa Aesar) [1, 4].

Temperature (K) Fig. 3. Critical current density vs. magnetic field of SPSed samples at 5 K (a) and 20 K | Fig. 4. Critical current density vs. magnetic field of SPSed samples at 5 K (a) and 20 K (b) H_{irr} (c), and ZFC m(T)/m(5K) (d) for OM added MgB₂ (Pavezyum).

Fig. 5. Critical current density vs. magnetic field of SPSed samples at 5 K (a) and 20 K (b), H_{irr} (c), and ZFC m(T)/m(5K) (d) for GeTe added MgB₂ (Pavezyum).

C. Conclusions

- 1. Dense samples of MgB₂, with relative density higher than 91 % were obtained by ex-situ SPS using different Ge based additions.
- 2. The best J_c was obtained for GEP1.4 (Fig. 3. a, b), followed by GEP2.5, $MgB_2Ge_{0.005}$ (Fig. 1. a, b), and $MgB_2(GeO_2)_{0.005}$ (Fig. 2. a, b).
- 3. The quality of pristine MgB₂ raw powder strongly influences the addition effect. When using two types of MgB₂ (produced different powders by companies), the efficiency of the addition in enhancing Jc can strongly change. In fact the effect of the additive vanishes for a raw MgB₂ powder rich in carbon. Samples made from the C-rich MgB₂ raw powder show enhanced J_c. (Fig. 4, 5. a, b).
- 4. Considering the observations from 3, the influence of Ge20Te80, and OM (Fig. 4, 5) we plan fabrication of added samples using a Cfree raw powder.

Acknowledgments **BATALU** acknowledges from University support POLITEHNICA of Bucharest (UPB), through the "Excellence Research Grants" Program, UPB – GEX. Identifier: UPB-EXCELENTA-2016 "Superconducting materials based on MgB₂ with new types of additions" No. 51/2016, Code 300, NEWADD.

Authors also acknowledge support from Partnership program in the priority domains -PN II, funded by MEN-UEFISCDI, project No. 214/2014 BENZISUPRA.

