Persistent Current Operation of MgB Coils with Superconducting Joints of Reacted Wires

Yota Ichiki and Hideki Tanaka (Hitachi, Ltd.)

Introduction

- MgB₂ can generate a highly stable magnetic field required for NMR or MRI by persistent current (PC) mode operation without liquid helium. The superconducting joint technique is essential for realizing
- We have developed in situ wires because of its superior current performance to that of ex situ wires.
- A technique for joining ex situ wires and unreacted in situ wires has been successfully developed. However, a technique for joining reacted in situ wires, especially for multi-filamentary wires, has been sparsely reported. It is necessary for joining reacted coils after heat treatment or coils produced by the react-and-wind (R&W) process.
- The purpose of this study is to demonstrate that an MgB₂ coil with a joint of reacted in situ wires can be operated in PC mode with sufficiently low resistance (< $10^{-13} \Omega$).

Experimental Details

Preparation of closed-loop coils

Cross-sectional views of the MgB2 wires.

Specifications of the MgB2 wire

	Mono- filamentary	Six- filamentary	
Diameter	1.3 mm	1.5 mm	
MgB ₂ fraction	33 %	23 %	
Doping	Non-doped	C-doped	
I _c (20K, s. f.)	2400 A	4000 A	

The $\it I_{c}$ of the wire in self-field was estimated from measuring magnetization of an MgB $_{2}$ wire core made by ourselves.

Sinter the wire core at 600 °C

Sinter the bulk for joining both ends of the wire at 800 °C

Setup for measurement of current decay

Specifications of the MgB_ccoils

Heater for controlling

-p			
•	Mono-	Six-	
	filamentary	filamentary	
Diameter	90 mm	90 mm	
Inductance	4.1x10 ⁻⁷ H	3.6x10 ⁻⁷ H	

	For mono- filamentary	For six- filamentary
Diameter of wire	0.4 mm	0.35 mm
I. D.	60 mm	70 mm
O. D.	115 mm	210 mm
Height	90 mm	60 mm
Number of turns	9000	25,000

Results and Discussion

Temperature dependence of trapped current

- The trapped current of the mono- and six-filamentary coils were almost the same.
- The ratios of trapped current to the Ic of the un-joined monoand six-filamentary wires were about 11 % and 6 %.

Current decay properties of closed-loop coils

Current decay of closed-loop coils for three hours. ≤

- No decay was observed from the start of PC mode operation in the case of 90% current capacity was trapped.
- In the case of actual operation, the resistance is expected to be sufficiently low for practical use.

190 Full-trappe 8 185 Current in MgB₂ 90%-trapped 180 Time after starting PC mode [s] Current decay of full- and 90%-trapped mono-filamentary coil

30

Conclusion

- Current decay properties of MgB₂ closed-loop coils with a joint of reacted in situ mono- and six-filamentary wires were investigated.
- Measuring the current decay revealed that there was no constant resistance larger than that due to flux creep and the wires were successfully joined. The joint resistance was about 10⁻¹³ to $10^{-12}\,\Omega$ one hour after the start of PC mode operation in the case of fulltrapped current.
- In the case of actual operation at lower current capacity ratio, the resistance was less than $10^{-13} \Omega$ and sufficiently low for practical applications.