

Institute for Technical Physics (ITEP)

Thermal Stability of commercially available Coated Conductors

Alan Preuss, Walter H. Fietz, Fabian Immel, and Michael J. Wolf

Motivation

- Soldering is a standard process in manufacturing of superconducting applications
- Thermal load during soldering can lead to degradation of coated conductors
- Precise degradation behavior of coated conductors in the temperature range between 200°C and 300°C so far largely unpublished

Heat treatment setup

- Aluminum block with heating cartridges
- Up to 3 samples in 63Sn37Pb solder bath
- Type K thermocouple as bath temperature sensor
- Temperature varied ±2,5°C around the set temperature

Thermal cycles

Shown: Critical current degradation of samples with a varying number of thermal cycles at 225°C

- Critical current degradation depends on time at elevated temperature, independent from the number of thermal cycles
- Subsequently samples were reused in the investigation

I_c/I_{c0} behavior of various production batches

Shown: Critical current degradation as a function of time at 250°C for three different production batches from SuperPower Inc.

- No difference was measured between batches with similar stabilizer thicknesses
- A batch with thinner stabilizer degraded noticeably less at longer durations

I_c degradation as a function of time

Shown: Critical current degradation as a function of time between 200°C and 300°C for SuperPower tapes

■ Degradation is strongly dependent on the temperature and time e.g. 10 % degradation after only 1 min at 300 °C. At 250°C 10 % degradation requires about 10 min

I_c degradation of three manufacturers in comparison

Shown: Critical current degradation of the manufacturers SuperPower Inc (SPI), Shanghai Superconductor Technologies (SST) and Deutsche Nanoschicht (DNA) for up to 10 min at various temperatures

- For short durations all manufacturers have a similar behavior
- Slight variations among the manufacturers can be overserved at longer durations

Summary and outlook

- Critical current degradation depends on time at elevated temperature, but appears independent from the number of thermal cycles
- Slight variations in the I_c degradation between tapes with different stabilizer thicknesses were measured
- A strong dependence on temperature and time can be observed
- Fort short duration degradation among different manufacturers appears similar
- Impact of stabilizer thicknesses needs be further investigated as well as the impact of e.g. the heat up time