

Electrical and Strain Behaviors of Solid Nitrogen and Conduction Cooled YBCO Coil under Thermal Disturbance and Over Current Pulse

Liyuan Liu, Yong Chen, Haiyang Zhang, Wei Chen, Jiangtao Shi, Xinsheng Yang*, Yong Zhang , Yong Zhao

Superconductor and New Energy R&D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031, China * xsyang@swjtu.edu.cn

Abstract

In the power system application of high temperature superconducting (HTS) devices, large amount of heat caused by thermal disturbance and over current during sudden electric interruptions will endanger the thermal stability of HTS devices. In this paper, the electrical and strain behaviors of solid nitrogen (SN_2) and conduction cooled YBCO coil under thermal disturbance and over current pulse has been investigated at 60 K. For the thermal disturbance experiment, the minimum quench energy (MQE), longitudinal and transverse normal zone propagation velocities (NZPV) in SN_2 and conduction cooled system are compared and discussed. The strain response characteristics of the coil during the quench process are also reported. In addition, the accumulated peak voltage and strain of the coil during the over current pulse test have been studied. These results show that the thermal stability of YBCO coil is significantly enhanced due to the large heat capacity of SN_2 .

Experimental detail

Fig. 1. Schematic diagram of a cross-section of the SN₂ cooled system

Fig. 2. Photograph of the sample holder in the SN_2 chamber.

No.:4MP6-14

Fig. 3. Schematic drawing of the arrangement of measurement leads, strain gauge and the heater in the coil.

Results and discussion

Accumulated number of over current repetitions

Conclusion

For the thermal disturbance experiment, the MQE declines along with the rise of I_t , but the NZPVs increase with the increase of I_t . MQE in SN₂ system is larger than that in conduction cooled system due to the heat capacity of SN₂. Moreover, NZPVs in SN₂ cooled system is slower than those in conduction cooled system, and the NZPV_L is faster than NZPV_T. The strain response time during the quench in SN₂ cooled system is shorter than that in the conduction cooled system. In the over current pulse test, the accumulated peak voltage and strain increase with the number of over current pulses. The peak voltage and strain increase slowly at the beginning. After the sixth over current pulses, the peak voltage and strain in SN₂ cooled system is lower than that in conduction cooled system. These results show that the thermal stability of the HTS coil is enhanced due to the large heat capacity of SN₂.

Superconductivity and New Energy R&D Center, Southwest Jiaotong University, Chengdu, China