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Motivation
● Electron emission is known to initiate vacuum arcs. 

However, the exact mechanism is still unclear.
● Reveal and understand the mechanisms leading from 

intense electron emission to plasma formation

● Plasma PIC simulations [1]: plasma can ignite from a Cu 
field emitter assuming:

➢ Intense field electron emission up to mA
➢ Evaporation of Cu neutral atoms to a rate of 0.015 

atoms/emitted e.
● What is the origin of those neutrals?
● What mechanisms lead to their evaporation?

[1]: H. Timko et. al., Contrib. Plasma. Phys. 4 , p229 
(2015)



  

Need for multi-physics simulations

● Existing hypothesis:
– Intense electron emission → heating → thermal-field-

assisted evaporation 
– Is this evaporation enough??

● A simulation of this process must include:
➢ Material deformations: Molecular Dynamics

➢ Electric field effects: Finite Element Method

➢ Electron emission: GETELEC

➢ Heat diffusion: Finite Difference Method

● All the above processes have to be calculated 
concurrently and self-consistently



  

Concurrent MD-ED
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Electron emission in the space-
charge limited regime

● Modified 1-D model: multiply the total voltage by 
ω<1, use representative values for E, J 
distributions

● Fitting to full 3D simulation data by Uimanov [1]
● Good agreement: The 1D SC model is sufficient
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[1] I. Uimanov, IEEE Trans. Dielectr. 
Electr. Insul. 18, 924 (2011)



  

Heating: Joule and Nottingham
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The whole simulation model
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Results: Thermal runaway-
evaporation

● Simulating for E
appl

=0.8GV/m, V
appl

=3kV 
DC

● Thermal runaway:

↑atom mobility 

↑ Temperature 

↑sharpness

↑ resistivities

↑local field ↑induced stresses

● Evaporation of large parts of the tip in 
forms of atoms and nanoclusters

● Eventually the tip has not enough 
length and it cools down gradually.

↑electron emission



  

Evaporation analysis

● Mean evaporation rate between first and last evaporation 
events:  R

Cu
= 75±11 atoms/ps 

● Mean current I = 2807±153 e/ps
● R

Cu/e
= 0.025±0.003 atoms/e

● Exceeds the minimum 0.015 found in the ArcPIC simulations!!! 

● Tested for two different Cu 
inter-atomic potentials

● 7 independent runs for each 
potential with different seeds

● The same qualitative 
behaviour for all (the 
numbers might deviate)



  

Conditions to runaway

● Prerequisites for the thermal runaway process to be 
initiated:
a) Heating enough to cause melting of a significant 

area at the apex region. T reach ~1400-1500K
b) Current densities that cause this high heating 

are of the order 1012 A/m2 (agreement with 
experiments)

c) Local field at the top (after SC lowering) must be 
more than ~10GV/m to “pull” the tip upwards

● Tips of 20-100nm height must be present to initiate 
this process 



  

Open questions - Future plans

● Still open questions:
➢ What happens with the evaporated atoms and clusters?
➢ How do they affect the electrostatics?
➢ What is the transient effect of the space charge? 

● Further development:
➢ Develop full 3D simulation for the space charge
➢ Simulate the impact of the nanoclusters on the anode
➢ Include the evaporated atoms in the electrostatic 

simulation
➢ Integrate PIC simulations in the vacuum region and track 

all evaporated particles until plasma ignition. 



  

Conclusions

● The mechanism leading from intense field emission to 
vacuum arc has still a lot of questions to be answered

● The integrated multi-physics simulations can reveal and 
give an insight in several processes

● A thermal runaway process leads to evaporation of 
large parts of a nanotip in the form of both atoms and 
nanoclusters

● The number of evaporated atoms matches well the 
minimum number required in plasma simulations to 
initiate plasma

● Further investigation of the behaviour of the vapour is 
needed to understand the behaviour of mechanisms 
and fully connect to the plasma calculations.
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