Thermal runaway of metal nano-tips
during intense electron emission
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Methods:

> Molecular Dynamics — Electrodynamics
> Electron emission

> Heat diffusion

Results:
> Thermal runaway in intensively emitting Cu nanotips

> Evaporation rate — connection to plasma onset simulations
Open questions - future plans

Conclusions



Motivation
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Electron emission is known to initiate vacuum arcs.
However, the exact mechanism is still unclear.

Reveal and understand the mechanisms leading from

intense electron emission {0 plasma formation

Plasma PIC simulations [1]: plasma can ignite from a Cu
field emitter assuming:

> Intense field electron emission up to mA

> Evaporation of Cu neutral atoms to a rate of 0.015
atoms/emitted e.

What is the origin of those neutrals?

What mechanisms lead to their evaporation?

[1]: H. Timko et. al., Contrib. Plasma. Phys. 4 |, p229
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Need for multi-physics simulations Q.
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* Existing hypothesis:

- Intense electron emission — heating - thermal-field-
assisted evaporation

- Is this evaporation enough??

* A simulation of this process must include:
> Material deformations: Molecular Dynamics
> Electric field effects: Finite Element Method
> Electron emission: GETELEC

> Heat diffusion: Finite Difference Method

* All the above processes have to be calculated



|
UNIVERSITY OF HELSINKI

Atomistic data (MD)

Surface extraction

v

Concurrent MD-ED

Coulomb and
Lorentz forces F

(Boundary conditions, @=0)

v

HELSINKI
INSTITUTE OF
PHYSICS

h =93nm, r=3nm, sa = 3°

Vid=0

v

qi
p dTET,

F=qE+q 2,

i =neigh

Electric potential O
and field E=—V ®

\

Gauss Law —» Charges ¢ on atoms




Electron emission in the space-
charge limited regime
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Electric potential ®©
and field E=—V ®
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GETELEC code
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Current density J and
Nottingham heat P _distributions
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Modified 1D SC model

v

Space-Charge Field suppression | |
factor

* Modified 1-D model: multiply the total voltage by
w<1, use representative values for E., J
[1] I. Uimanov, IEEE Trans. Dielectr. distributions

Electr. | [. 18, 924 (2011 e . i :
eet- NSt (201) * Fitting to full 3D simulation data by Uimanov [1]
e (Good aareement: The 1D SC: model ie <ciifficient
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_ Heating: Joule and Nottingham | &
t=0.0ps

> GETELEC
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The whole simulation model
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> Atomistic data (MD) <
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Results: Thermal runaway-
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evaporation GG
TIK] ke « Simulating for E. =0.8GV/m,V__ =3kV
.6000 appl appl
DC

* Thermal grunaway:

—» 1 Temperature —» 71 resistivities

i 300 Tatom n;obility

Tsharpness <

Tlocal field %» Tinduced stresses

Telectron emission

* Evapeoration Of large parts of the tip in
forms of atoms and nanoclusters

* Eventually the tip has not enough
length and it cools down gradually.
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* Tested for two different Cu
iInter-atomic potentials

* 7 independent runs for each
potential with different seeds

* The same qualitative
behaviour for all (the
numbers might deviate)

* Mean evaporation rate between first and last evaporation
events: R_= 75£11 atoms/ps

* Mean current | = 28071153 e/ps

e R cue 0.025+0.003 atoms/e

 Execeeds the minimum 0.015 found in the ArcPIC simulations!!!



Conditions to runaway 6}

* Prerequisites for the thermal runaway process to be
Initiated:
a) Heating enough to cause melting of a significant
area at the apex region. T reach ~1400-1500K
b) Current densities that cause this high heating
are of the order 10" A/m? (agreement with
experiments)
c) Loecal field at the top (after SC lowering) must be
more than ~10GV/m to “pull” the tip upwards
* Tips of 20-100nm height must be present to initiate
this process
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Open questions - Future plans

* Still open gquestions:
> What happens with the evaporated atoms and clusters?
> How do they affect the electrostatics?
> What is the transient effect of the space charge?

* Further development:
> Develop full 3D simulation for the space charge
> Simulate the impact of the nanoclusters on the anode
> Include the evaporated atoms in the electrostatic
simulation
- Integrate PIC simulations in the vacuum region and track
all evaporated particles until plasma ignition.



Conclusions
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* The mechanism leading from intense field emission to
vacuum arc has still a lot of questions to be answered

* The integrated multi-physics simulations can reveal and
give an insight in several processes

* A thermal runaway process leads to evaporation Of

large parts of a nanotip in the form of both atems and
nanoclusters

* The number of evaporated atoms matches well the
minimum number required in plasma simulations to
Initiate plasma

* Further investigation of the behaviour of the vapour is
needed to understand the behaviour of mechanisms
and fully connect to the plasma calculations.
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Thank you!!!!
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