

News from the Pierre Auger Observatory

Lukas Nellen, for the Pierre Auger Collaboration

ICN-UNAM

lukas@nucleares.unam.mx

Ultra-High Energy Cosmic Rays

- Energies above
 10¹⁸ eV or 10¹⁹ eV
- Center of mass energies larger than that of the LHC Particle Physics
- Low flux: 1 per
 100 1000 km² per year
- Acceleration mechanism not known
- Sources not known

The Pierre Auger Collaboration

17 countries, ≈460 collaborators

Argentina – Australia – Bolivia – Brazil – Colombia – Czech Republic – France – Germany – Italy – Mexico – Netherlands – Poland – Portugal – Romania – Slovenia – Spain – United Kingdom – United States

The Auger Site

1660 surface detector stations, 1.5 km spacing Infill: 750m spacing

- 4 Fluorescence detector sites
- * 6 telescopes each
 - *+3 elevated
- * 27 telescopes in total
- * Full coverage of the surface array
- * Capability to detect stereo events
- Quadruple events seen

Low Energy Extensions Radio Detectors

The Auger Site

A surface detector station

A surface detector station

Triggering the Pierre Auger Observatory - SD

- SD station trigger
 - Threshold
 - Threshold deconvolved
 - Time over threshold
 - Multiplicity of positive steps: count positive steps, fixed range
 - Variants: lower E threshold
 - Thanks to reduced muons in trigger
- Central Trigger (T3)
 - Space-time coincidence of station T2

Triggering the Pierre Auger Observatory - FD

- First level trigger: pixel threshold
- Second level trigger: track fragments

- Quick analysis and reconstruction: Request SD readout (T3 to CDAS)
- New: modified 3rd level readout: Detection of ELVES (lightning)

Energy Determination

Energy Determination

Combined spectrum

 Combine results from different techniques and detectors

Spectral parameters:

$$E_{ankle} = 4.82 \pm 0.07 \pm 0.8 \text{ EeV}$$

 $E_{s} = 42.1 \pm 1.7 \pm 7.6 \text{ EeV}$

$$\gamma_1 = 3.29 \pm 0.02$$

 $\gamma_2 = 2.60 \pm 0.02$
 $\Delta \gamma = 3.14 \pm 0.02$

Combined fit

- Fit spectrum and X_{max}
- Uniform source model
- Free parameters:
 - \odot Injection spectral index γ
 - Cutoff rigidity R_{cut}
 - Spectrum normalization J₀
 - Mass fractions f_A (4 independent) H, He, N, Si, Fe
- Propagation
 - Photon interaction: CMB, EBL
 - Pair production
 - Photodisintegration

Fit result

1st minimum

Absence of Fe?

2nd minimum

Combined fit interpretation

- 1st minimum extended: hard to fix values
- 2nd minimum well reproduced
 Too many protons
- Preferred low Rcut: Cutoff in spectrum combined effect of propagation (GZK) and source cutoff
- Mixed composition: conflicts with pure proton, electron dip model

Anisotropy: Rayleigh analysis in right ascension

 \odot Harmonic analysis in Right Ascension α

$$a_{\alpha} = \frac{2}{N} \sum_{i=1}^{N} w_i \cos \alpha_i, \qquad b_{\alpha} = \frac{2}{N} \sum_{i=1}^{N} w_i \sin \alpha_i$$

- Weights account for small non-uniformities
- Obtain: amplitude and phase of 1st harmonic

$$r_{\alpha} = \sqrt{a_{\alpha}^2 + b_{\alpha}^2}, \qquad \tan \phi_{\alpha} = \frac{b_{\alpha}}{a_{\alpha}}$$

- For events above 8 EeV
 - Amplitude 4.7^{+0.8}/_{-0.7}%
 - \odot Chance probability 2.6×10^{-8}
 - \odot After penalization: 5.2 σ

Event rate vs Right Ascension

CR dipole vs 2MRS dipole

- Cross indicates CR dipole, Diamond 2MRS dipole
- Expected deflection shown for specific model for magnetic fields

Needlet analysis

- Needlet: localized wavelet on sphere
- Reproduces: deviation from isotropy for E > 8 EeV

Neutrino detection: Geometry of air showers

Neutrino detection: Geometry of air showers

Inclined showers

Hadronic shower:

Old, develops far from the detector

Neutrino shower:

Early region: young

Late region: old

Note:

1000g/cm² are

 ≈ 10 km at 90°

∴ Showers age along footprint

Inclined showers

Neutrino limits

Starts to limit some source models and approach cosmogenic flux predictions

FD photon discrimination

SD photon discrimination

ΔH gives Δt:
deeper shower has
slower signals

Parametrize with simulations Principal component analysis on deviation

Photon limit

Search for magnetic monopoles

Composition and X_{max}

- Both X_{max} and RMS(X_{max}) depend on
 - Energy: Number of generations in air shower
 - Cross-section, i.e., type of primary: $\sigma(\text{Fe-Air}) > \sigma(\text{p-Air})$

Composition

- Indication of a change from light to heavy as energy increases
- Interpretation requires models
- Observation not compatible with all models

Mixed composition at ankle: Spread of X_{max}

- Correlation Xmax-Signal cannot be fitted using pure composition (A const, i.e., $\sigma(\ln A) = 0$)
 - r_G: Measure for correlation

Mixed composition at ankle: Spread of X_{max}

- Correlation Xmax-Signal cannot be fitted using pure composition (A const, i.e., $\sigma(\ln A) = 0$)
 - r_G: Measure for correlation

Muon fraction

 Extracted fraction of muons and models disagree ⇒ rescale

Muon rescaling

0.4

0.7

8.0

0.9

1.3

1.2

EPOS-LHC p

1.1

EPOS-LHC Mixed

 R_{E}

Risetime asymmetry

- Early vs late shower
 - Additional propagation for late part
- Composition dependent

Asymmetry example (data)

E = 7.7 EeV $\theta = 52^{\circ}$ more asym.

Early

Late

Models: lack of ability to fit

Neither model fits all data:

EPOS-LHC: fails Xµ_{max}

QGSJETII: inconsistent (sec0)_{max} for different distances

Models: lack of ability to fit

Neutrino followup of Gravitational Wave events

GW170817 / GRB170817A: NS-NS merger

- NS-NS merger seen in Gravitational Waves
- Confirmed as short GRB (Fermi GBM, Integral)
 - Fermi LAT, H.E.S.S., HAWC observe region much later

Neutrino Followup: IceCube, Antares, Pierre Auger Observatory

At time of GW trigger:
 Event in region of maximum sensitivity for Auger

GW170817 Neutrino Limits

- Time windows:500 sec, 14 days
- Only optimistic model constraint by observations
- Consistent with
 - GRB observed offaxis
 - Low luminosity GRB

Auger Upgrade

- Lack of knowledge of composition limits the interpretation of results
- Separate determination of muonic and electro-magnetic signal is important

Goal:

- Determine origin of flux suppression: GZK or maximum energy of sources
- Search for proton component at the highest energies (> astronomy)
- \odot Study air showers and particle production at $E_{cms} > 70 TeV$

1) New SD-Electronics

Purpose:

- facilitate the readout of new electronic channels (PMTs)
- faster sampling (40→120 MHz) for better timing and µ-identification
- enhanced dynamic range (by adding a small PMT)
- faster data processing and more sophisticated triggers
- better data monitoring

- design is ready
- prototypes are now being produced

2b) Enhanced Muon Counting: ASCII

ASCII: Auger Scintillator for Composition II

Conclusions

- Auger operating since 2004, complete since 2008
- Robust, stable detector. Results:
 - Spectrum: ankle, suppression
 - Anisotropy: Evidence for dipole
 - Competitive neutrino limits
 - Photon limits rule out some models
 - Exotics: Monopoles, Lorentz violation
 - Muon counting, asymmetries: discrepancy with interaction models
 - LIGO/VIRGO GW neutrino followup (MoU)
 - Measured p-Air cross-section at 57 TeV
 - Non-cosmic ray science
- Upgrade planed
 - Extend science reach

