CBM: Experiment, Physics and Trigger

Volker Friese

Triggering Discoveries in High-Energy Physics II Puebla, 29 January - 2 February 2018

Outline

- I. Heavy-Ion Collisions and the CBM Experiment
- II. The Physics of CBM
- III. Trigger Concept

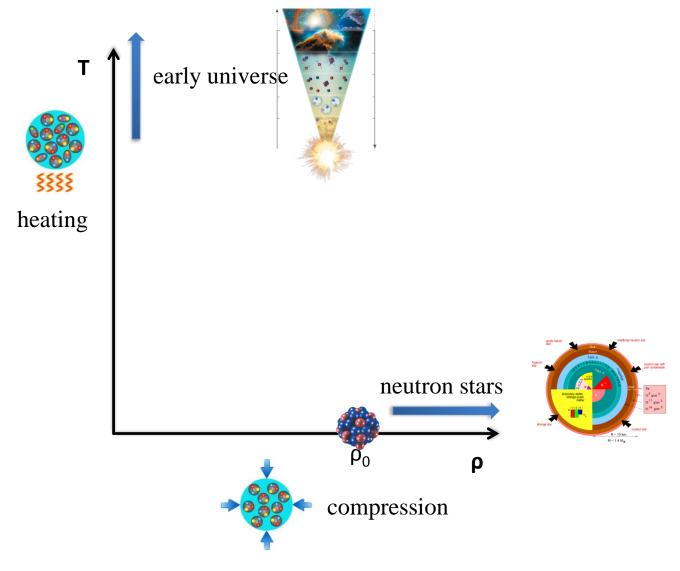
I. Setting the Stage

Heavy-Ion Collisions and the CBM Experiment

Intro

Compressed

We study hot and dense matter


Baryonic

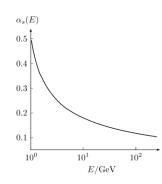
Strongly interacting, baryon-rich matter

Matter

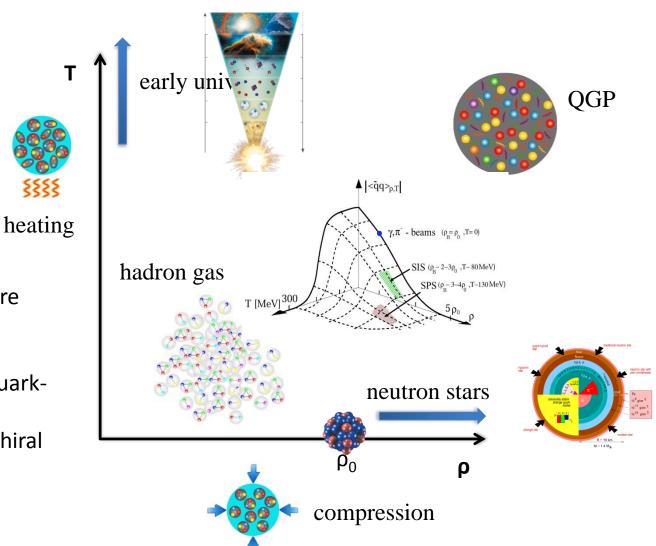
We study extended matter, not particles

Matter at extreme conditions

Strongly Interacting Matter


To understand matter, one needs to know

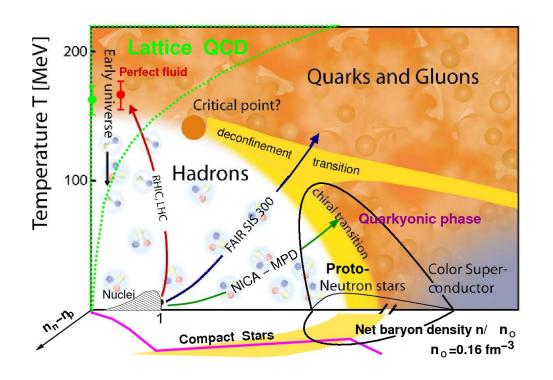
- The basic constituents: quarks and gluons
- The force between them: strong interaction
 - The theory of the strong interaction is QCD
 - Which is unfortunately in general not calculable


Properties of the strong interaction in vacuum:

- Asymptotic freedom: the interaction is weak at small distances (large energies)
- Confinement: in vacuum, quarks are bound into hadrons; no free colour charges
- Chiral symmetry breaking: compound objects (hadrons) are much heavier than the sum of their constituents

Driving question: do these properties change with temperature and/or density?

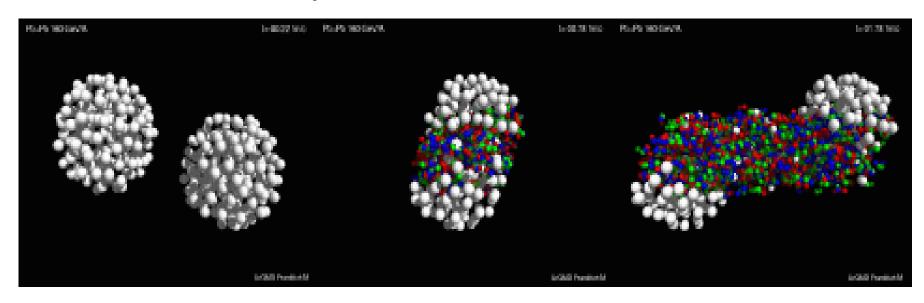
Matter at extreme conditions


We expect at high enough temperature and / or density:

- Breakdown of confinement (quarkgluon plasma)
- Restoration of chiral symmetry

Theoretical Access

- Perturbation Theory
 - only possible for large momentum transfer (some observables)
- Lattice QCD: statistical sampling of QCD on a discrete space-time grid
 - Restricted to small densities
- Effective QCD models: simplified Lagrangian
 - Tuned to LQCD; hope that behaves like real QCD where LQCD not applicable

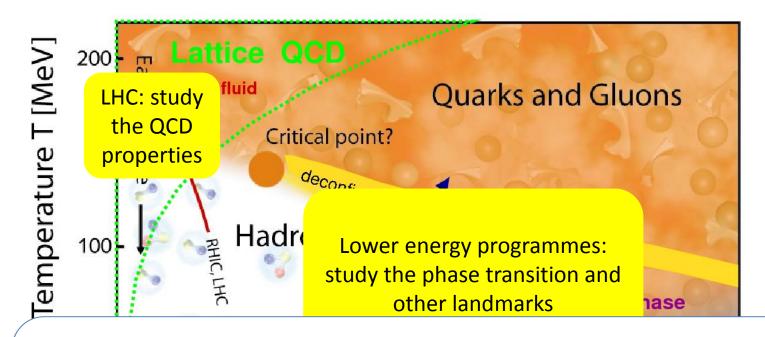

The Phase Diagram of QCD Matter

Possibly a very complex structure! Landmarks:

- Cross-over at low densities,
- first-order (?) transition at high densities,
- both separated by a critical point.
- Chiral transition / quarkyonic matter ?
- Exotic phases at extreme densities

Experimental Access

In high-energy collisions of heavy nuclei, matter at high energy densities (hot and dense) is created – for a very short time and in a very limited volume.

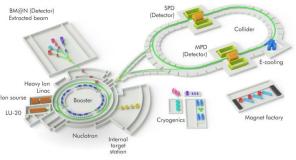

Control parameters:

- Collision energy
- System size (ion species / collision centrality)

Exploring the QCD Phase Diagram

- Nuclear collisions at high energies (LHC, RHIC):
 - Incoming nucleons leave the reaction zone (transparency) after depositing a part of their kinetic energy
 - No baryon number transfer to the fireball
 - Produce a medium with high temperature and vanishing netbaryon density
- At lower energies (SPS, FAIR, NICA):
 - A part (or all) of the baryon number is transferred into the fireball (stopping)
 - Create a medium with moderate temperature but high net-baryon density
- Variation of the collision energy, allows to study different parts of the phase diagram

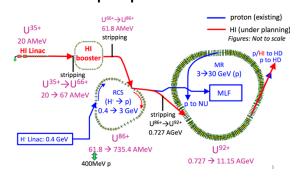
Exploring the QCD Phase Diagram

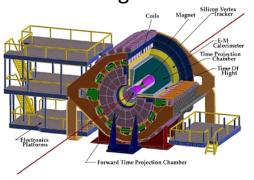


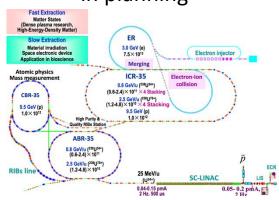
Key questions:

- Is there a critical point, and if yes, where?
- Where is deconfinement first reached?
- Is there a first-order phase transition?
- Is there a difference between chiral and deconfinement transition?

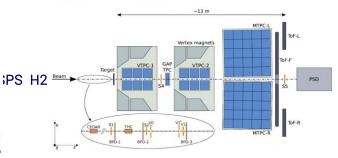
Facilities for Baryon-Rich Matter


NICA (JINR, Russia) under construction


HADES (GSI, Germany) running


JPARC (Japan) proposed

STAR (BNL, USA) running



in planning

NA61 (SPS, CERN) running

NA61/SHINE detector

The FAIR Project

Nuclear Structure & Astrophysics (Rare-isotope beams)

Hadron Physics (Stored and cooled 14 GeV/c anti-protons)

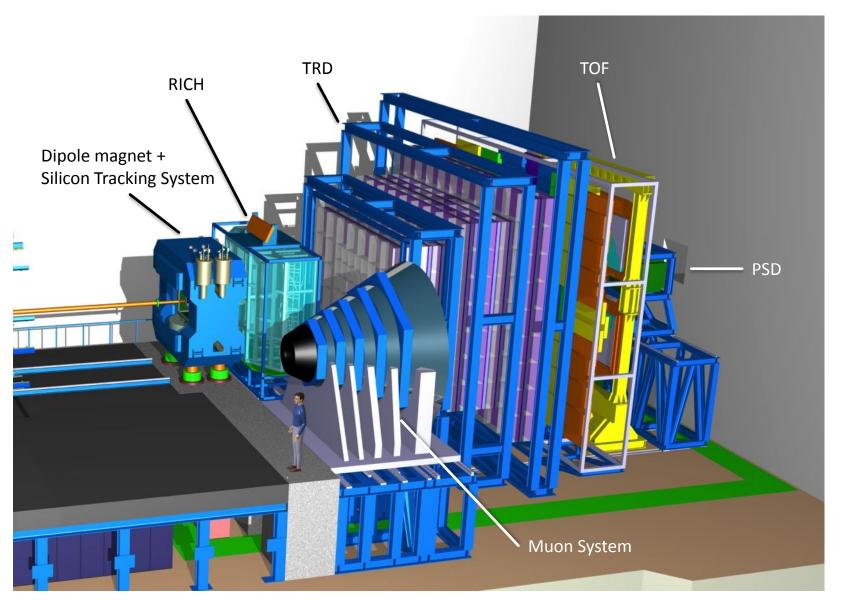
QCD-Phase Diagram (HI beams 2 to 45 GeV/u)

Fundamental Symmetries & Ultra-High EM Fields (Antiprotons & highly stri

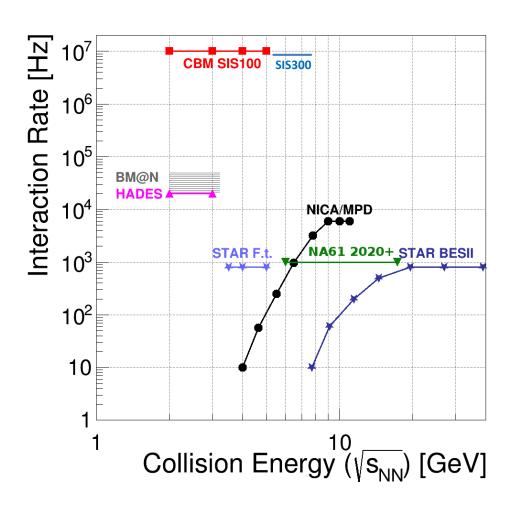
Dense Bulk Plasmas (Ion-beam bunch compre & petawatt-laser)

Materials Science & Radiation Biology (Ion & antiproton beams)

FAIR Accelerator Complex and CBM


Primary Beams

- 109/s Au up to 11 GeV/u
- 109/s C, Ca, ... up to 14 GeV/u
- 10¹¹/s p up to 29 GeV



FAIR phase 1
FAIR phase 2

CBM: Experiment Systems

CBM in the experimental landscape

Uniqueness of CBM: very high rate capability

Comes with huge challenges in terms of:

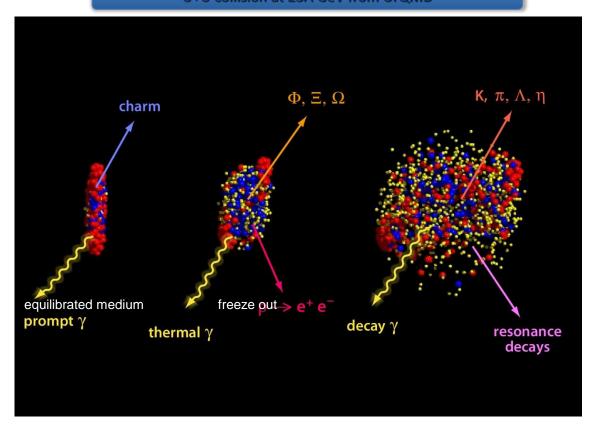
- Speed and radiation hardness of detectors and read-out electronics
- Data processing on- and offline

II. CBM Physics

(parforce, not exhaustive)

The Experimental Task

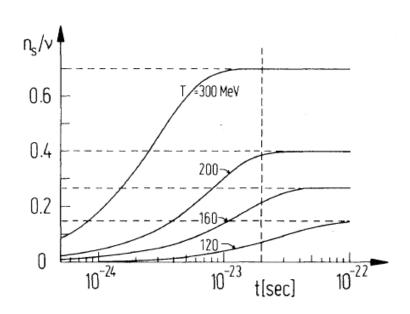
The Hope:


Learn from the multitude of emitted particles (final state) about the state of the matter immediately after the collision (early state)

The Task:

Detect the final-state particles as completely as possible and characterise them w.r.t. momentum and identity (π , K. p, ...)

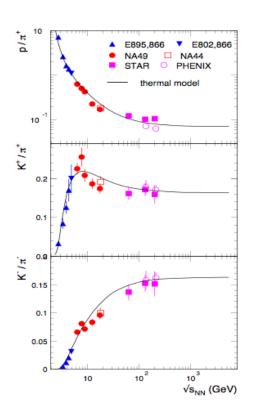
Observables

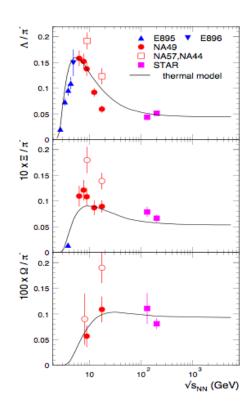

U+U collision at 23A GeV from UrQMD

Different probes give access to various stages of the collision

Strangeness is interesting

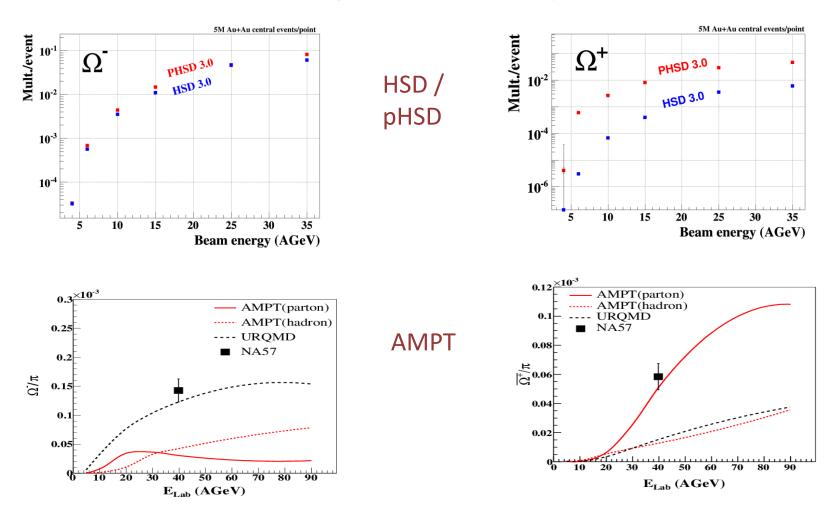
- No strangeness in entrance channel (nucleons): strangeness is produced in the reaction
- Hadronic production (e. g. p+p -> $K\Lambda p$): $m_K \approx 500 \text{ MeV} >> T_H$
- Partonic production (e.g. g + g -> s sbar): $m_s \approx 100 \text{ MeV} <= T_H$


Koch, Müller, Rafelski, Phys. Rep. 142 (1986) 167


Relaxation of s-Quarks in a QGP within few fm/c ≈ lifetime of the fireball

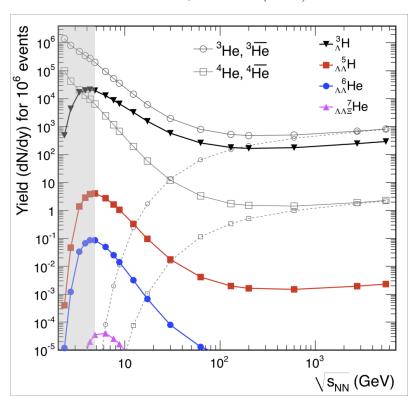
Expectation: More strangeness production in A+A relative to p+p, if QGP was formed

"Strangeness enhancement"


Multi-Strange Hyperons

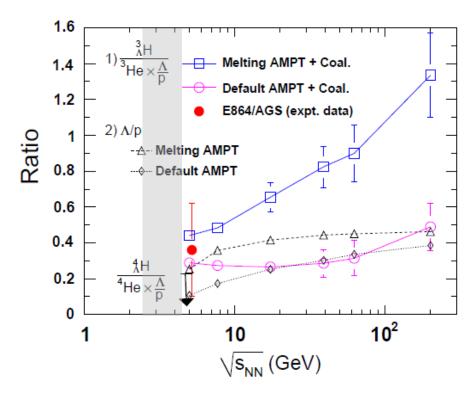
A long-lasting debate: pure hadronic description or signal of drastic change in matter properties? Data on multi-strange baryons will be decisive!

Strange Anti-Baryons



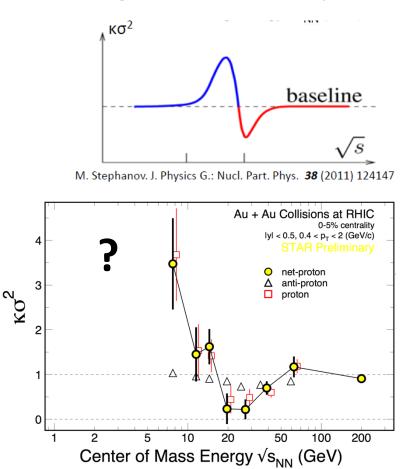
Microscopic models (including partonic production) predict the anti-hyperons to be very sensitive to partonic production mechanisms (hyperons much less)

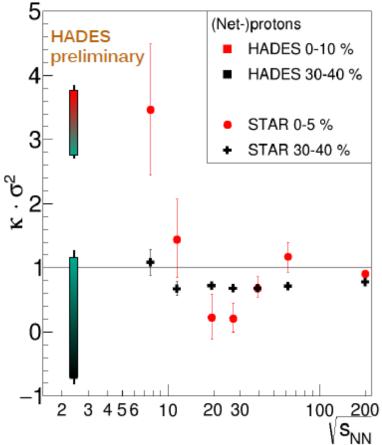
CBM Physics: Hyper-Matter


In heavy-ion collisions: produced through capture of Λ in light nuclei

A. Andronic et al., PLB 697 (2011) 203

Thermal model: maximum production at CBM energies

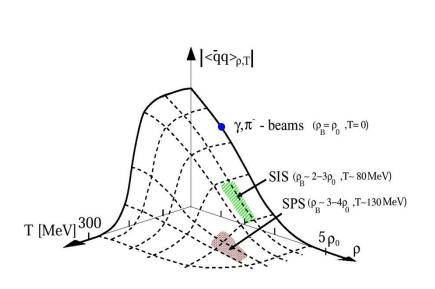

S. Zhang et al., PLB 684 (2010) 224

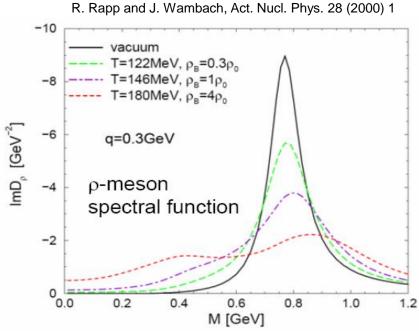

Transport: sensitive to medium properties (correlation of strangeness and baryon number)

Fluctuations

Should signal the critical point...

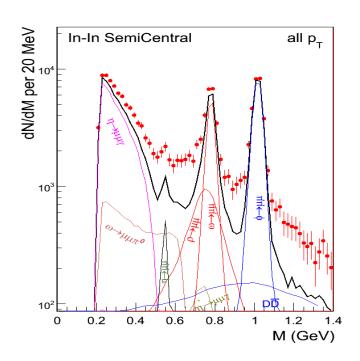
M. Lorentz, QM 2017 (Net-)protons

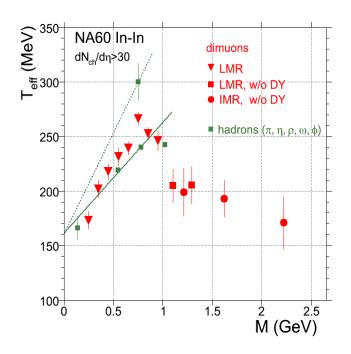



STAR, NPA 956 (2016) 320c

...or spinodial decomposition of a mixed phase?

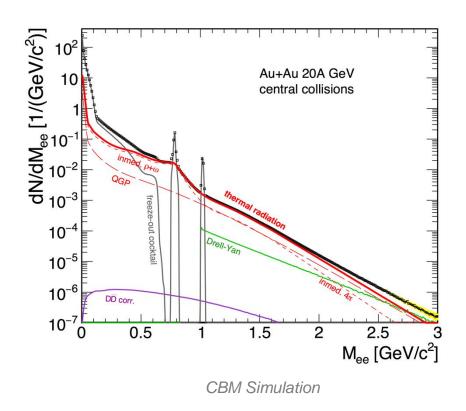
Vector Mesons and the Generation of Mass


- Hadrons are expected to change their properties (mass / width) in presence of dense medium
 - vanishing of chiral condensate; restoration of chiral symmetry (?)
- Experimental access: short-lived vector mesons (ρ)
 - decay inside the fireball -> retain information on dense environment
 - decay into lepton pairs: no strong interaction, carry information out of the medium



CBM Physics: Lepton Pairs

Emitted throughout the lifetime of the fireball: probe its space-time evolution Low mass (< 1 GeV): in-medium properties of rho meson; excess yield (over vacuum hadronic cocktail) is sensitive to the lifetime of the system Intermediate mass (1 - 2.5 GeV): no hadronic sources; measure directly the temperature of the fireball.



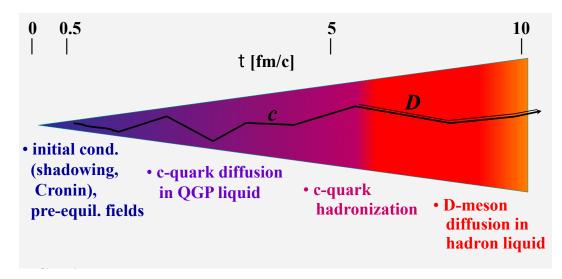
NA60, EPJC 59 (2009) 607

CBM Physics: Lepton Pairs

No di-lepton data exist between HADES and NA60!

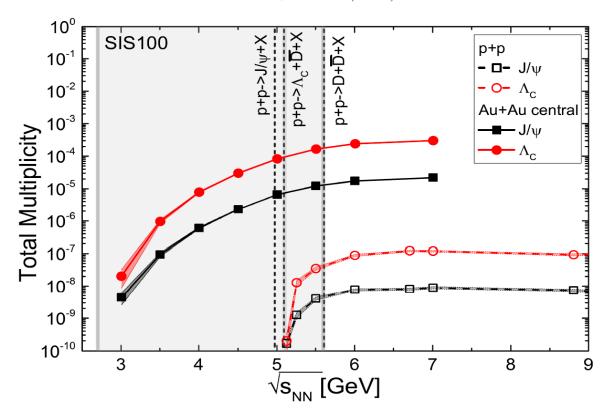
CBM will provide di-lepton mass spectra and measure the caloric curve in the FAIR energy range. Interpretation almost model-independent!

250
225
L 200
175
150
100
75
50
1 10
Collision Energy (√s_{NN}) [GeV]


Extracted temperature at intermediate masses; violet: speculated signature of a mixed phase

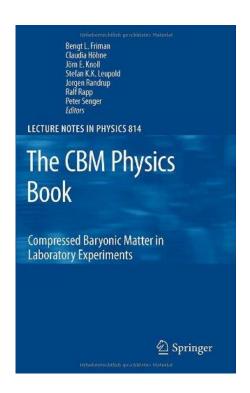
Charm

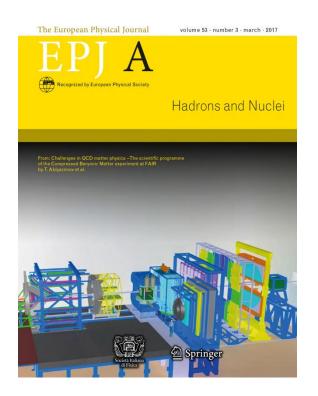
- Important (if not decisive) probe of the created medium
 - that holds at all energies!
- Fraction of charm hadronising in J/psi is sensitive to the medium properties (e.g. suppression in QGP)
- Particular at lower energies (below top SPS):
 - N_{ccbar} << 1 -> no regeneration, "clean" probe
 - Softer J/psi, longer-lived fireball: charm has a chance to see the medium
- Proper interpretation of data requires the measurement of both open and hidden charm
 - Important part of the CBM physics programme


Charm in Heavy-Ion Collisions

- Unlike lighter quarks, m_c >> T
 - thermal production of charm negligible
 - production of charm in first-chance N-N collisions
 - charm probes the produced medium
 - c quark diffusion in QGP
 - D meson / J/ψ propagation in hadronic medium

Open Charm Below Threshold

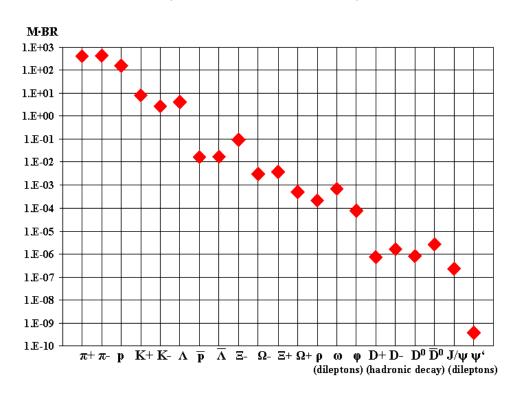

J. Steinheimer et al., PRC 95 (2017) 014911



Sub-threshold production through heavy baryonic resonances: $N^* \rightarrow \Lambda_c + D$ and $N^* \rightarrow N + J/\psi$

CBM Physics Programme

- A long menu of observables from strange hadrons over lepton pairs to charmed hadrons
- For more exhaustive information:



III. Online Data Selection

(in order to avoid the term "trigger")

Rare Observables

Model predictions of particle multiplicities (x branching ratio) (central Au+Au, 25A GeV)

- Some of the (most interesting) probes are extremely rare.
- Decent measurement in reasonable time necessitates high interaction rates.
- Current heavy-ion experiments run with very moderate rates (100 Hz - several kHz).
- When designing a new experiment: what is the rate limit?

Rate Limitations

The measured interaction rates are limited by:

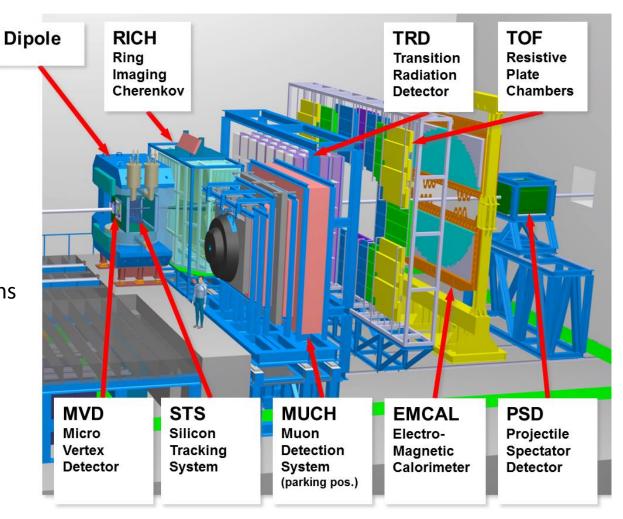
- what the accelerator can deliver: beam luminosity (collider) or intensity (fixed-target)
- what the experiment can take:
 - speed of detectors (fast: e.g. ECAL, solid-state detectors; slow: e.g. gas drift detectors)
 - speed of read-out electronics (e.g. shaping time of the ADC)
 - trigger latency
 - DAQ throughput
 - archival rate

Current experimental upgrade plans usually target higher interaction rates (LHC experiments, STAR, NA61)
CBM is designed as a high-rate experiment from the beginning.

Natural Time Scales

Considerations for the design interaction rate:

- The accelerator promises 2×10^9 ions/s. With a (typical) 1% target, this would give 20 MHz interaction rate -> 50 ns on average between collisions.
- Event duration
 - typical experiment size 10m
 - Difference of time-of-flight through the setup between $\beta = 1$ and $\beta = 0.7$ particles is 20 ns
- Event pile-up should be avoided
 - $-\,$ hard to resolve different events in fixed-target mode (are all within several 100 μm inside the target)



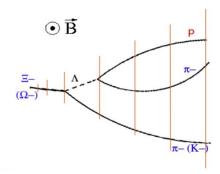
CBM design rate: 10 MHz

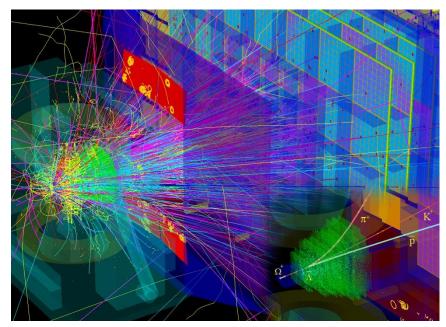
Experimental Setup

Mission: build a

- a fixed-target heavy-ion experiment
- for collisions in the FAIR energy range
- which can measure hadrons, electrons, muons and open charm
- at event rates up to 10 MHz.

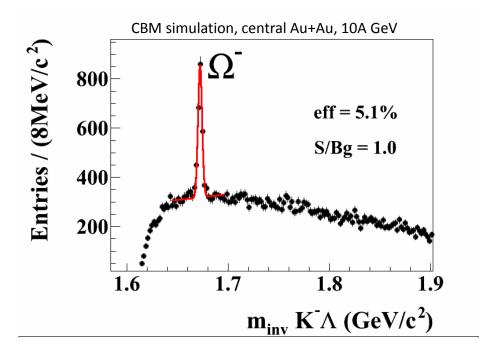
Data Rates

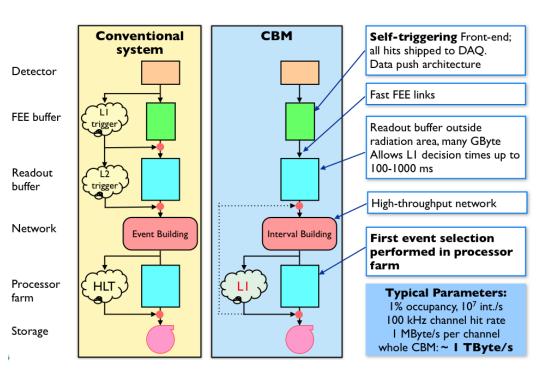

- Raw data event size: 100 kB / min. bias event (Au+Au)
- At 10 MHz event rate: raw data rate 1 TB/s
- Archival rate:
 - technologically possible are rates of 100 GB/s and above
 - limiting factor are the storage costs
 - typical runtime scenario 2 effective months / year (5 x 10^6 s)
 - At 1 GB/s: gives a storage volume of 5 PB/year



We aim at an data archival rate of a few GB/s, meaning that the raw data volume has to be suppressed online by factors 300 - 1000.

Selecting Data Online


- Some (not all) of the rare probes have a complex signature. Example: $\Omega \to \Lambda K^+ \to p \pi^- K^+$
- In the background of several hundreds of charged tracks
- No simple primitive to be implemented in trigger logic


Selecting Data Online

- Selection requires reconstruction of all tracks plus combinatorial search for two decay vertices: typical software task
- Offline performance for Omega:
 S/B ~1
- If realisable online: excellent software trigger

- Similar argument for many topology-based observables (hyper-nuclei, exotic strange objects, charm)
- Simpler patterns e.g. for lepton pairs $(J/\psi \text{ or low-mass})$
- R/O design must be based on the most challenging case

DAQ and Trigger Concept

- No hardware trigger at all
- Continuous readout by autonomous FEE
- FEE sends data message on each signal above threshold ("self-triggered")
 - Hit message come with a time stamp; readout system is synchronised by a central clock
- DAQ aggregates messages based on their time stamp into "time slices"
- Time slices are delivered to the online computing farm (FLES)
- Decision on data selection is done in the FLES (in software)

Triggered and Free-Running Readout

Trigger: snapshots of the detector

Trigger-less: a movie of the detector

N.b.: Too large to be stored! Will be cut into pieces (events) in the photo lab (= FLES).

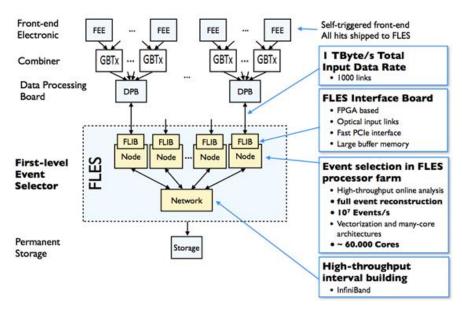
Advantages

- no latency issues; the system is limited by throughput
- no buffers on FEE ASICS (inside radiation zone) needed
- data selection is shifted to software
 - in principle, everything which is usually done in the offline analysis can be implemented for online data selection
 - very flexible: easy to switch between triggers, to use different triggers in parallel
 - assessing the trigger efficiency is straightforward: no emulation of trigger logic needed

So, why was it not done before?

- Requires an online compute farm powerful enough to process the entire data stream
- Throughput is defined by the size of the compute farm and the speed of the algorithms.
- CBM estimate: equivalent to ~10⁵ CPU cores needed
- Some years ago, this was the entire LHCgrid
- Nowadays (let alone in some years), feasible to finance and to host close to the experiment

Issues of a Trigger-less System

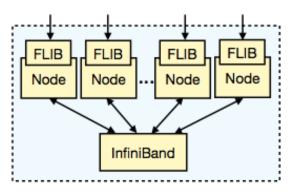

- Noise from detectors and electronics
 - tight threshold in order to suppress the contribution of noise to the total data rate
 - good signal-to-noise ratios in detectors are needed in order not to lose signals

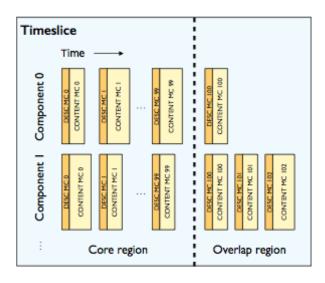
Example: fraction of noise from the STS

M.b. event rate	10 MHz	1 MHz	100 kHz	10 kHz
Threshold / noise = 3	40 %	86 %	98 %	99.8 %
Threshold / noise = 3.5	11 %	55 %	92 %	99.2 %
Threshold / noise = 4	2 %	15 %	65 %	95 %

- No events given to software
 - Unlike in conventional HLTs, where events are build before by DAQ
 - Online reconstruction starts from time-sorted data stream
 - Algorithms have to take into account time coordinate ("4D reconstruction")

Online Data Flow



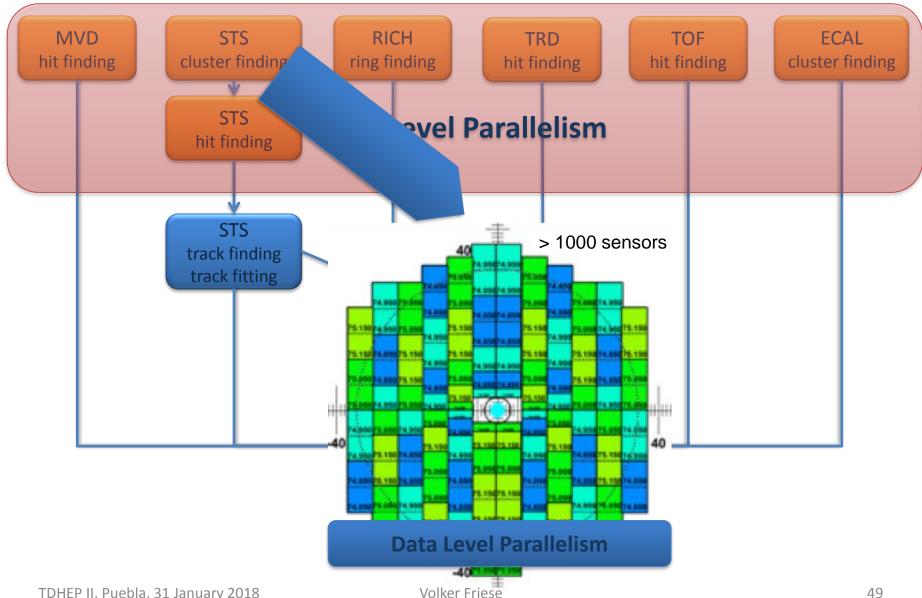

Green Cube, GSI

FLES Architecture

- FLES is designed as an HPC cluster
 - · Commodity PC hardware
 - GPGPU accelerators
 - Custom input interface
- Total input data rate ~1 TB/s
- InfiniBand network for interval building
 - High throughput, low latency switched fabric communications
 - Provides RDMA data transfer, very convenient for interval building
 - Most-used system interconnect in latest TOP500 (224 systems)*
- Flat structure w/o dedicated input nodes Inputs are distributed over the cluster
 - Makes use of full-duplex bidirectional InfiniBand bandwith
 - Input data is concise, no need for processing before interval building
- Decision on actual commodity hardware components as late as possible
 - First phase: full input connectivity, but limited processing and networking

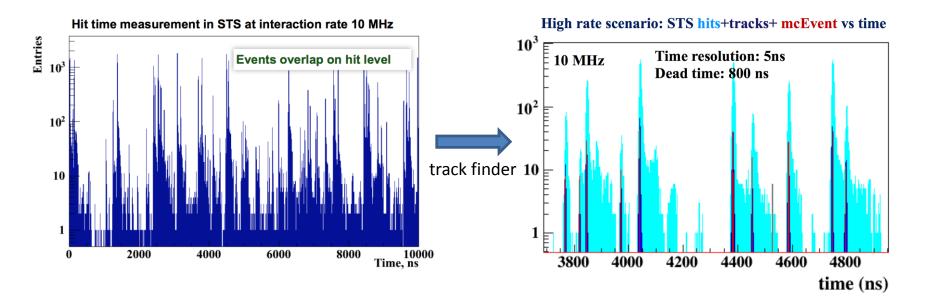
Time Slice: Interface to Online Reconstruction

Timeslice


- Two-dimensional indexed access to microslices
- Overlap according to detector time precision
- Interface to online reconstruction software

- Basic idea: For each timeslice, an instance of the reconstruction code...
 - is given direct indexed access to all corresponding data
 - uses detector-specific code to understand the contents of the MCs
 - applies adjustments (fine calibration) to detector timestamps if necessary
 - finds, reconstructs and analyzes the contained events

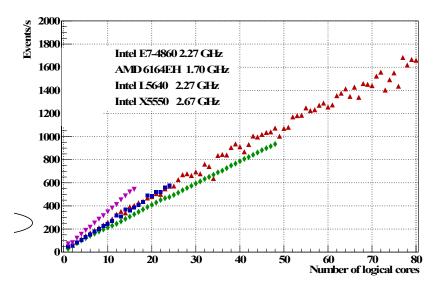
Real-Time Reconstruction


- In our concept, the task of online data selection is shifted from electronic engineering to software engineering.
- For a given event / data rate, the speed of the algorithms determines the required size of the online compute farm.
- For a given financial budget / size of the online farm, the speed of the algorithms determine the physics output of the experiment.
- High-performance online software is a pre-requisite for the successful operation of CBM.
 - Make optimal use of available parallel computer architectures: many-core, GPU, accelerators
 - Be flexible to upcoming new architectures
- Parallelism is the key word
 - Data-level parallelism: one time slice per compute node
 - Task-level and data-level parallelism within time slice

Parallelisation within time-slice

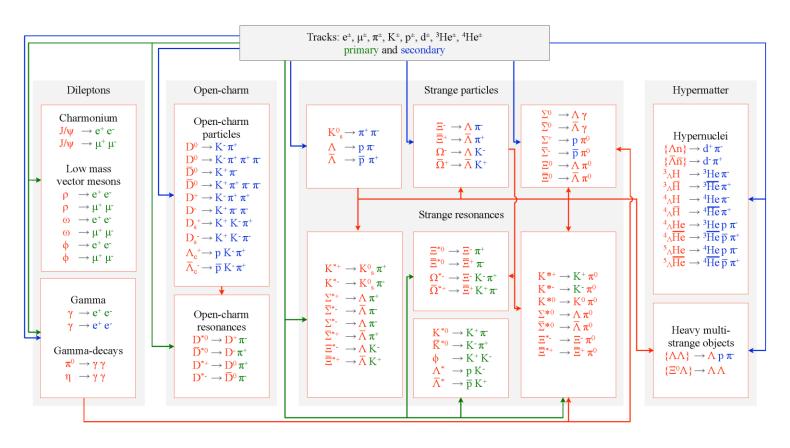
Track Finding

- Usually, the most compute-intensive task in reconstruction
- Approach: Cellular Automaton, operating on time-ordered stream of detector hits (no event association)


After track finding, events can be defined as time-clusters of tracks

CA track finder: performance and scalability

100 AuAu minimum bias events at 10 AGeV


Efficiency, %	3D	4D 0.1MHz	4D 1MHz	4D 10MHz		
All tracks	92.5 %	93.8 %	93.5 %	91.7 %		
Primary high-p	98.3 %	98.1 %	97.9 %	96.2 %		
Primary low-p	93.9 %	95.4 %	95.5 %	94.3 %		
Secondary high-p	90.8 %	94.6 %	93.5 %	90.2 %		
Secondary low-p	62.2 %	68.5 %	67.6 %	64.3 %		
Clone level	0.6 %	0.6 %	0.6 %	0.6 %		
Ghost level	1.8 %	0.6 %	0.6 %	0.6 %		
True hits per track	92%	93 %	93 %	93%		
Hits per MC track	7.0	7.0	6.97	6.70		

High efficiency for primary tracks
Rate effects become visible above 1 MHz interaction rate

Good scaling behaviour: well suited for many-core systems

Particle Reconstruction in Real-Time

KFParticleFinder: Simultaneous access to multitude of particles Real-time reconstruction allows online selection of rare probes.

Real-Time Reconstruction - Status

Not all problems yet solved but the major hurdles are taken.

Results so far give confidence that online event reconstruction and selection will be possible on a computer farm of < 10⁵ cores.

Summary

- CBM: A heavy-ion experiment to investigate baryon-rich QCD matter at energies from 2A to 45A GeV at FAIR/Darmstadt
- The physics programme comprises a suite of observables including very rare ones. The design punchline is thus to be capable to take interaction rates in the MHz range.
- Novel read-out concept without hardware trigger; real-time data selection exclusively on CPU.
- Timeline: Facility under construction; experiment starts mass production of components soon; operation from 2024 on.