Overview of NA62 Physics

Giuseppina Anzivino
University of Perugia and INFN
on behalf of the NA62 Collaboration
The Kaon legacy

NA48/2 & NA62: brief history

The measurement of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay

Tests of SM and search for New Physics
 → Heavy Neutral Leptons
 → Lepton Flavour/Number Violation studies
 → Search for the Dark Photon

Long term prospects

Conclusions
The Kaon Legacy

The Kaon is the lightest kind of flavoured matter studied since the 60’s to test fundamental properties of nature

The Standard Model was largely built from Kaons

- The theta-tau puzzle and the parity violation
- Strangeness and flavour conservation in Strong Interactions
- Universality of Weak Interaction
- Absence of Flavour Changing Neutral Currents and GIM mechanism
- Discovery of CP violation, indirect (ε) and direct (ε'/ε)

Kaons exhibit a very rich phenomenology, as «minimal flavour laboratory»
Why still Kaon physics?

Kaon decays are a powerful tool to

- study explicit Violations of SM, such as LFV/LNV
- probe the flavour sector by means of FCNC
- test of fundamental symmetries such as CP and CPT
- study of strong interaction at low energy: $\pi-\pi$ scattering, ChPT, hadron structure
- CKM unitarity tests and flavour mixing
- Search for long-lived low energy neutral particle

Ideal environment to search for New Physics

Flavour sector *complementary* to LHC energy frontier

Kaon Physics strikes back

Buras@KAON 2016
Kaons at CERN

NA48
Main goal: Search for direct CPV
Measurement of ε'/ε
Beams: K_L / K_S

NA48/1
Main goal: Rare K_S decays and hyperon decays, CPV tests
Beams: K_S

NA48/2
Main goal: Search for direct CPV
Charge asymmetry measurement
Beams: K^+ / K^-

NA31 (1984-1990)
First evidence of direct CPV
Beams: K_L / K_S

NA62
Main goal: Test of μ-e universality
R_K measurement
Beams: K^+ / K^-

NA62 - R_K

Main goal: Rare kaon decays, measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
Beam: K^+

1-2-2018

Giuseppina Anzivino
The main goal of the NA62 experiment is the measurement of the Branching Ratio of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay ….

….. but, many other physics opportunities
The NA62 approach allows for a broad physics programme

- **Standard physics**
 - \(\chi PT \) studies: \(K^+ \rightarrow \pi^+\gamma\gamma \), \(K^+ \rightarrow \pi^+\pi^0e^+e^- \), \(K^+ \rightarrow \pi\pi l^+\nu \)
 - Lepton universality studies: \(R_K = \frac{\Gamma(K^+\rightarrow e^+\nu)}{\Gamma(K^+\rightarrow \mu^+\nu)} \)

- **LFV/LNV in Kaon decays**
 - \(K^+ \rightarrow \pi^+\mu^\pm e^{\mp} \), \(K^+ \rightarrow \pi^-\mu^+e^+, \ K^+ \rightarrow \pi^-l^+l^+ \)

- **Heavy neutrino searches**
 - \(K^+ \rightarrow l^+\nu_H \)
 - \(\nu_H \) (from K, D decays) \(\rightarrow \pi^\pm l^{\mp} \)

- **\(\pi^0 \) decays**
 - \(\pi^0 \rightarrow \) invisible, \(\pi^0 \rightarrow 3\gamma \) (4\(\gamma \)), \(\pi^0 \rightarrow \gamma U \)

- **Dark sector searches**
 - Long living dark photon (from prompt mesons decays) \(\rightarrow l^+l^- \)
 - Long living axion-like (produced in beam-dump config.) \(\rightarrow \gamma \gamma \)
Measurement of the ultra-rare decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
$K \rightarrow \pi \nu \nu$ in the SM ...

- FCNC process forbidden at tree level
- Short distance contribution dominated by Z penguin and W box diagrams
- “Super-clean” theoretically, hadronic ME extracted from measured quantities (K_{e3})
- Very small BR due to the CKM top coupling $A \sim (m_t/m_W)^2|V_{ts}^*V_{td}| \approx \lambda^5$
- Measurement of $|V_{td}|$ complementary to those from B sector

\[\frac{\delta BR}{BR} = 10\% \quad \Rightarrow \quad \frac{\delta |V_{td}|}{|V_{td}|} = 7\%. \]

\[BR(K^+ \rightarrow ^+ \bar{n} = (8.4 \pm 1.0) \times 10^{-11} \]

\[BR(K_L \rightarrow 0 \rightarrow \nu = (3.4 \pm 0.6) \times 10^{-11} \]

[Buras et al., JHEP 1511 (2015) 033]
Comparison with B physics can provide hints on New Physics dynamics.
Several SM extensions predict sizable deviations for the BR

- **Simplified Z, Z’ models** [Buras, Buttazzo, Knegjens, JHEP 1511 (2015) 166]
- **Littlest Higgs with T-parity** [Blanke, Buras, Recksiegel, EPJ C76 (2016) no.4 182]

Measurement of the BR of the charged \((K^+ \rightarrow \pi^+ \nu \bar{\nu})\) and neutral \((K_L \rightarrow \pi^0 \nu \bar{\nu})\) modes can discriminate among different NP scenarios.
Experimental status

Final results from E787/E949 at BNL

\[BR(K^+ \rightarrow \pi^+\nu \nu) = 1.73^{+1.15}_{-1.05} \times 10^{-10} \]

The probability that all 7 observed events are background is \(10^{-3}\) twice as large as, but still consistent with SM expectation

First search: 1969 (10^{-4}) Observation: 1997 (10^{-10})
The NA62 experiment at CERN

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow(INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver(UBC) ~ 200 participants, ~ 30 institutions
The NA62 Kaon beam

- 400 GeV/c SPS primary protons
- 3×10^{12} protons/pulse
- 75 GeV/c un-separated hadron beam: π^+, K^+, p ($\Delta p/p \pm 1\%$)
- Kaon component \rightarrow 6%
- 800 MHz \rightarrow 50 MHz kaons \rightarrow 6 MHz
- $4.8 \times 10^{12} K^+$ decays/y \rightarrow SES $\sim 10^{-12}$
NA62 - Experimental principles

Goal: 10% precision Branching Ratio measurement

$O(100) \, K^+ \rightarrow \pi^+\nu\bar{\nu}$ events in ~ three years of data taking

Statistics

- BR(SM) $\sim 8.4 \times 10^{-11}$
- Acceptance: 10%
- K decays: 10^{13}

Systematics

- $\geq 10^{12}$ background rejection
- $\leq 10\%$ precision on background measurement

Very challenging experiment

Huge background

<table>
<thead>
<tr>
<th>Decay</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+\nu$ (K$_{\mu2}$)</td>
<td>63.5%</td>
</tr>
<tr>
<td>$\pi^+\pi^0$ (K$_{\pi2}$)</td>
<td>20.7%</td>
</tr>
<tr>
<td>$\pi^+\pi^+\pi^-$</td>
<td>5.6%</td>
</tr>
<tr>
<td>$\pi^0e^+\nu$ (K$_{e3}$)</td>
<td>5.1%</td>
</tr>
<tr>
<td>$\pi^0\mu^+\nu$ (K$_{\mu3}$)</td>
<td>3.3%</td>
</tr>
</tbody>
</table>
Background and kinematics

Keystones

✓ \varnothing (100 ps) timing between subdetectors
✓ \varnothing (10^4) background suppression from kinematics
✓ $> 10^7$ muon suppression
✓ $> 10^7 \pi^0$ (from $K^+ \rightarrow \pi^+\pi^0$) suppression

$m^2_{\text{miss}} = (P_K - P_\pi)^2$ defines two low background signal regions separated by $K^+ \rightarrow \pi^+\pi^0$
Detector layout

Beam and secondary particle tracking

Hermetic photon vetoes

Particle Identification

- **KTAG - CEDAR**
 - K\(^+\) identification

- **GIGATRACKER**
 - 3 Si-pixel stations, low mass

- **STRAW chambers in vacuum**
 - 4 stations + dipole magnet

- **RICH**
 - \(\pi/\mu\) identification

Fiducial decay region

- 0 m
- 100 m
- 160 m
- 255 m

Detector Paper, 2017 JINST 12 P05025

LAV: 8.5 - 50 mrad
LKr: 1 - 8.5 mrad
SAV: < 1 mrad
Kaon identification and tracking

- **Kaon Identification**
 - KTAG
 - CEDAR, a differential Cherenkov counter filled with Nitrogen
 - excellent time resolution < 80 ps
 - efficiency ~ 99%

- **Kaon tracking**
 - Beam spectrometer: 3 stations of Silicon pixel detectors + achromat
 - time resolution ~ 130 ps per station
 - momentum resolution $\Delta p/p < 0.4%$
Secondaries identification and tracking

Tracking

- STRAW tubes
 - 4 chambers in vacuum + magnet
 - $\sigma(p)/p \approx 0.32% \pm 0.008% \times p$ (GeV/c)
 - $\sigma(\theta) < 60$ μrad
 - $\sigma(x), \sigma(y) \sim 130$ μm

- PID
 - Filled with neon at atm pressure
 - 20 hexagonal mirrors
 - Separate $\pi^-\mu$ in $15 < p < 35$ GeV/c
 - $\sim 90\%$ π ID efficiency, $\sim 1\%$ μ mis-ID
 - Measure pion crossing time with a resolution ~ 70 ps
 - Provide a L0 trigger for ch. tracks
Charged vetos and muon detectors

Charged Hodoscope
- Inherited form NA48
- Level 0 trigger, rate 10 MHz
- time resolution ≈ 200 ps

CHANTI
- Veto inelastic interactions in GTK 3

Muon detector
- MUV 1+MUV 2 Fe/scintillator
- hadronic/mip cluster ID
- usable also in trigger (pion E)
- MUV 3 scintillator tiles & 2 PMs
- fast muon counter, inefficiency < %
- used in L0 trigger

New CHOD
- scintillator tiles
- time resolution ~ 1.2 ns
- efficiency > 99%

Giuseppina Anzivino
Veto systems

Large angle (8.5-50 mrad) (LAV)
- 12 stations (11 in vacuum)
- Lead glass blocks
- Inefficiency <10^{-4} for E_{\gamma} > 200 MeV

Small angle < 1 mrad (IRC & SAC)
- “shashlyk” calorimeters
- Inefficiency <10^{-4} for E_{\gamma} > 5 GeV

Intermediate angle (1-8 mrad) LKr
- Liquid Krypton Calorimeter
- Inefficiency <10^{-5} for E_{\gamma} > 10 GeV
The NA62 experiment

downstream

target

1-2-2018 Giuseppina Anzivino
Trigger system

L0 (Hardware level)
(RICH, LKr, LAV, MUV)

~10 → 1 MHz

L1 (Single Detector Software level)

~100 kHz

L2 (Multi-Detector Software level)

~10 kHz

Giuseppina Anzivino
NA62 data taking

- 2014 - Pilot run
- 2015 - commissioning run
- 2016 - commissioning and physics run
- 2017 - physics run
Physics runs

Physics run in 2016
✓ Stable data taking, intensity 13×10^{11} ppp on target (40% nominal)
✓ Limited by beam structure (including 50 Hz)
✓ $\sim 4 \times 10^{11}$ K$^+$ decays collected useful for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Physics run in 2017
✓ Successful, $\sim 3 \times 10^{12}$ K$^+$ decays collected
✓ Expected similar conditions in 2018
✓ Number of decays should correspond to 10-15 signal events at the SM sensitivity depending on tighter/looser selection cuts
✓ Plan to run after LS2 to complete $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement
NA62 signal regions

Analysis of 2.3×10^{10} K^+ decays (~ 5% of 2016 data)

- Timing π^+ $\sigma(t_{\text{CHOD}})$ ~ 250 ps, $\sigma(t_{\text{RICH}})$ ~ 150 ps
- Timing K^+ $\sigma(t_{\text{KTAG}})$ ~ 80 ps, $\sigma(t_{\text{GTK}})$ ~ 100 ps
- Spatial matching: intersection of GTK and Straw track $\sigma(\text{cda})$ ~ 1.5 mm
- Mis-tagging probability ~ 1.7 %
Kinematics and background

3 definitions of the missing mass

\[m_{\text{miss}}^2 = \left(p_{K^+}^{\text{GTK}} - p_+^{\text{STRAW}} \right)^2 \]

\[m_{\text{miss}}^2 (\text{RICH}) = \left(p_{K^+}^{\text{GTK}} - p_+^{\text{RICH}} \right)^2 \]

\[m_{\text{miss}}^2 (\text{beam}) = \left(p_{K^+}^{\text{beam}} - p_+^{\text{STRAW}} \right)^2 \]

- Kinematical suppression measured on data
- Fraction of background events in the signal region

\[K^+ \rightarrow \pi^+ \pi^0 \quad \sim 6 \times 10^{-4} \]
\[K^+ \rightarrow \mu^+ \nu \quad \sim 3 \times 10^{-4} \]
Particle ID

RICH ring radius vs track momentum

Particle ID with calorimeters
✓ MVA on LKr and MUV 1/2
✓ $\varepsilon(\mu) \sim 10^{-5}$, $\varepsilon(\pi) \sim 80\%$

Particle ID with RICH
✓ $\varepsilon_{\text{ring}}(\pi) \sim 90\%$ (depends on p_{π^+})
✓ $\varepsilon(\mu) \sim 10^{-2}$, $\varepsilon(\pi) \sim 80\%$

1-2-2018

Giuseppina Anzivino

NA62 preliminary

Combined PID performance using RICH and calorimeters: μ suppression $< 10^{-7}$
Photon rejection

before γ rejection
minimum bias trigger (D=400)

Photon Veto conditions: LKr, LAV, IRC, SAC

- $K^+ \rightarrow \pi^+\pi^0$ suppression (in the $K^+ \rightarrow \pi^+\pi^0$ region)

 $\varepsilon(\pi^0) = (1.2 \pm 0.2) \times 10^{-7}$

- 15-16\% $\pi\nu\nu$ accidental losses (measured on data)

after γ rejection
($K^+ \rightarrow \pi^+\nu\bar{\nu}$ trigger)

Hermetic γ veto suppression of $\pi^0 \rightarrow \gamma\gamma < 10^{-7}$
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ - Preliminary Result

5% of 2016 data set, 2.3×10^{10} kaon decays

- Expected $\pi\nu\bar{\nu}$: 0.064
- Expected backgrounds:
 - $K^+ \rightarrow \pi^+\pi^0$: 0.024
 - $K^+ \rightarrow \mu^+\nu$: 0.011
 - $K^+ \rightarrow \pi^+\pi^-\pi^0$: 0.017
 - Beam induced: < 0.005

- Estimated with data driven methods
- Other backgrounds negligible

Event in box has the missing mass outside the signal region (no GTK)
Analysis optimization in progress
$K^+ \rightarrow \pi^+ \nu\bar{\nu}$ - Outlook

→ Analysis on the full 2016 data set is progressing
→ Processing and preparation for the 2017 data set on-going, big sample (expected 10-15 $K^+ \rightarrow \pi^+\nu\bar{\nu}$ signal events)
→ Data taking will resume in April 2018, until November 2018
→ Then, Long Shut Down 2
→ To reach ultimate sensitivity NA62 plans to continue data taking after LS2
→ Along with the $K^+ \rightarrow \pi^+\nu\bar{\nu}$ measurement, a broad and rich programme of physics will be addressed.
Exotics @ NA62: Heavy Neutrino, Dark Photon, LFV/LNV searches
Exotics @ NA62

The high-intensity setup, trigger system flexibility, and detector performance, as

- high-frequency tracking of beam particles
- redundant PID
- ultra-high-efficiency photon vetoes

make NA62 particularly suitable for searching for New Physics effect from different scenarios:

- Heavy Neutral Leptons (2015 data sample)
- Lepton Universality, LFV/LNV (2007-2008 data sample)
- Dark Photons (2016 data sample)
- ALPs – Axion Like Particles (2016 data sample)
Search for Heavy Neutral Leptons (HNL)
HNL searches - motivations

- Observation of neutrino oscillations ➔ massive neutrinos need to be accommodated in the SM.
- Many SM extension proposed, involving massive “sterile” neutrinos (HNLs) which mix with the ordinary “active” neutrinos.
- For example, the vMSM [Asaka-Shaposhnikov, PLB 620 (2005) 17]

> 3 right-handed neutrinos, N_i, added in the SM

- The lightest (N_1, mass $\lesssim 10$ keV) is a Dark Matter candidate
- $N_{2,3}$, mass $\lesssim 1$ GeV, introduce extra CPV phases to account for Baryon Asymmetry of the Universe (BAU) and produce SM neutrino masses

- The model explains simultaneously
 - neutrino oscillations and smallness of neutrino masses
 - cosmic Dark Matter (DM) candidate
 - Baryon Asymmetry of the Universe

- Active - sterile neutrino mixing described by a mixing matrix U
HNL searches with Kaons

In Kaon decays, if \(m_N < (m_K - m_\ell) \) HNL are observable

PRODUCTION

- Search for peaks in \(m^2_N = m^2_{\text{miss}} = (p_K - p_\ell)^2 \)

\[
(K^+ \rightarrow l^+ N) = (K^+ \rightarrow l^+ \ell) \times l(m_N) \times |U_{l4}|^2
\]

DECAY

- HNL decays only in SM particles

\[
(N \rightarrow \text{SM particles}) \propto |U_{l4}|^2 \times m^3_N
\]

- If \(m_N < 500 \text{ MeV/c}^2 \) main decays are:
 - \(N \rightarrow \pi^0 \nu, N \rightarrow \pi^\pm \mu^{\mp}, N \rightarrow \pi^\pm e^{\mp}, N \rightarrow \nu \nu \nu \)

Focus on NA62
HNL searches at NA62 - 2015 data

Select decays $K^+ \rightarrow e^+N$ and $K^+ \rightarrow \mu^+N$
Kaon decays in the fiducial volume: $N_K \sim 3.01 \times 10^8$

- Search for peaks in $m_{\text{miss}}^2 = (p_K - p_l)^2$
- Signal region: $170 \leq m_{\text{miss}} \leq 448$ MeV/c2
- HNL MC simulation:
 - Acceptance vs HNL mass $A(m_N)$
 - Missing mass res. vs HNL mass $\sigma(m_{\text{miss}})$

1-2-2018

Giuseppina Anzivino
HNL searches at NA62 - results

Number of expected and observed events and UL for each HNL mass hypothesis

- **Expected and observed upper limits** on $\text{BR} (K^+ \rightarrow e^+N)$ and $\text{BR} (K^+ \rightarrow \mu^+N)$

- **Expected and observed events** and UL for each HNL mass hypothesis

- **Number of expected and observed events** and UL for each HNL mass hypothesis

1-2-2018

Giuseppina Anzivino

38
HNL searches at NA62 - global limits and prospects

Upper Limits on $|U_{l4}|^2$

$$|U_{l4}|^2 = \frac{BR(K^+ \rightarrow l^+ N)}{BR(K^+ \rightarrow l^+ \ell)} \times \frac{1}{l(m_N)}$$

NA62 2007 data analysis (1):
- Extends the mass range for Upper Limit on $|U_{\mu4}|^2$
- Most stringent limit in $300 \leq m_{\text{miss}} \leq 375$ MeV/c2

NA62 2015 data analysis (2):
- Reaches 10^{-6}-10$^{-7}$ limits on $|U_{e4}|^2$ and $|U_{\mu4}|^2$
- $170 \leq m_{\text{miss}} \leq 448$ MeV/c2

NA62 prospects
- major improvements for beam and detector
- $|U_{e4}|^2$ limit expected to decrease, 1-2 orders of magnitude

World comparison of Upper Limits from K^+ and π^+ decays
Lepton Universality and LFV/LNV
Lepton Universality - measurement of R_K

$$R_K = \frac{\left(K^\pm \rightarrow e^\pm \right)}{\left(K^\pm \rightarrow \mu^\pm \right)}$$

- World Ke2 statistics increased by a factor of 10
- In agreement with SM expectation, within 1.2 σ
- Motivation for improved precision R_K measurements

Prospects:
NA62 1 M events (downscaled trigger) expected (2 years data taking), statistical uncertainty $\sim 0.1\%$

Prospects: Total uncertainty expected $\sim 0.2\%$

$ RK = \left(2.488 \pm 0.007_{\text{stat}} \pm 0.007_{\text{syst}}\right) \times 10^{-5}$

<table>
<thead>
<tr>
<th></th>
<th>$R_K \times 10^5$</th>
<th>precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDG 2008</td>
<td>2.447 ± 0.109</td>
<td>4.5%</td>
</tr>
<tr>
<td>2014</td>
<td>2.488 ± 0.009</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Phys Lett B 719 (2013) 326

Giuseppina Anzivino

1-2-2018
LNV/LNC in $K^\pm \rightarrow \pi^0 \mu^\pm \mu^\pm$ @ NA48/2

Same sign muon sample - LNV
- Kaon decays in the fiducial region
- Observed events in the signal region
- Expected background (MC)
- Rolke-Lopez method for UL 90% CL

Opposite sign muon sample - LNC
- Kaon decays in the fiducial region
- Observed events in the signal region
- Background

LNV and LNC resonance search
- Search for 2-body resonances in $\pi\mu\mu$ candidates performed assuming different mass hypotheses, both for same sign and opposite sign muons
- Statistical significance never exceeds $+3\sigma$ - no signal observed
- From UL(BR), UL($|U_{\mu4}|^2$) can be extracted

Search for the Dark Photon in π^0 decays
Dark photon production in π^0 decays

- One of the simplest extension of the SM, aiming at explaining the abundance of Dark Matter in the Universe, predicts an extra U(1) gauge symmetry, with its corresponding gauge boson A', the Dark Photon (DP).
- The Dark Photon is characterized by two a priori unknown parameters, the mass $m_{A'}$ and the mixing parameter ε^2.
- NA62 also a π^0 factory, mainly from $K^+ \rightarrow \pi^+\pi^0$.
- Dark Photon production in $\pi^0 \rightarrow A'$ and subsequent A' decay.

$$BR(\ 0 \rightarrow A') = 2 \times 2 \left(1 - \frac{M_{A'}^2}{M_{\pi^0}^2}\right)^3 BR(\ 0 \rightarrow \)$$

→ NA48/2 searches of Dark Photon in Kaon and pion decays
- $\pi^0 \rightarrow A'$ and $A' \rightarrow e^+e^-$ [Phys. Lett. B 746 (2015) 178]
- $K^\pm \rightarrow \pi^0X$, $X \rightarrow \mu^+\mu^-$ [Phys. Lett. B 769 (2017) 67]
→ NA62 searches
- $\pi^0 \rightarrow A'$ and $A' \rightarrow \chi\chi$ (invisible)
- Long-lived A' (in dump mode, work in progress)
Dark photon decay into invisible

- Data taking and analysis parasitic to $K^+ \rightarrow \pi^+\nu\bar{\nu}$, exploiting
 - extreme photon veto capability
 - high resolution tracking
 - in a high rate environment

\rightarrow Large sample of $K^+ \rightarrow \pi^+\pi^0$
\rightarrow The M_{miss}^2 should peak around A' mass for $\pi^0 \rightarrow A'\gamma$ decay and around zero for $\pi^0 \rightarrow \gamma\gamma$ background
\rightarrow data-driven background estimation
\rightarrow The ratio of the number of signal events to the number of π^0's allows a determination of the ε coupling parameter

$$\frac{n_{\text{sig}}}{n_0} = \frac{BR(\pi^0 \rightarrow A')}{BR(\pi^0 \rightarrow \gamma\gamma)}$$

$M_{\text{miss}}^2 = (P_{K^+} P_+ P)^2$

DATA
$\pi^0 \rightarrow \gamma\gamma$
with 1 γ lost

MC
$\pi^0 \rightarrow A'\gamma$
m = 40-120 MeV

1-2-2018
Giuseppina Anzivino
Dark Photon - Result

- Data sample: $\sim 1.5 \times 10^{10}$ K$^+$ decays
- DP mass range: ~ 50 MeV/c$^2 < m_{A'} < \sim 90$ MeV/c2
- No statistically significant excess observed
- New Upper Limit at 90% CL in the coupling (ε) vs mass plane

Results indicate that the statistical capability of NA62 allows an improvement on previous recent results.
Axion-Like Particles (ALPs)

NA62 offers a very good discovery potential for Axion-Like Particles (ALPs) in the MeV to GeV range weak coupling

- Pseudo-scalar ALP created by photon fusion (Primakov effect);
- Long-lived, weakly-interacting particles produced along with nominal beam;
- NA62 has the possibility to dump the beam by closing TAX and removing target;
- Collected $\sim 1 \times 10^{16}$ POT using dedicated triggers in 2017.

Projected NA62 sensitivity in the parameter plane, for 1 day and 1 month of data taking:

Parameter regions overlaid with previous experiments and astrophysical constraints.

Analysis on-going

Giuseppina Anzivino
Future prospects

A rich program can be carried out in Run 3 with minimal/no upgrades to the present set-up

- Refine $K^+ \rightarrow \pi^+\nu\bar{\nu}$ measurement, if needed
- With the present K^+ set-up, in dedicated runs, can reach unprecedented LFV/LNV sensitivity in K^+ and π^0 decays
- Runs in “beam-dump” mode, possibility to search for NP in the hidden sector: Heavy Neutral Leptons, Dark Photons, Axion/Axion-Like-Particles
What next?

- The $K \rightarrow \pi \nu \nu$ full picture needs the measurement of charged and neutral mode
 - $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: NA62, current Run and Run 3
 - $K_L \rightarrow \pi^0 \nu \bar{\nu}$: KOTO at JPARC

- New measurements??

- Idea to make the measurement of $K_L \rightarrow \pi^0 \nu \nu$ at CERN SPS
 - high energy experiment ($p_K = 70$ GeV), complementary to KOTO
 - photons from K_L decays boosted forward, makes photon veto easier
 - possibility to reuse NA62 detector (partially)
 - require 2×10^{13} ppp, i.e. 6 x NA62, currently not available
 - aim to collect ~ 60 SM events in 5 years from 2026 with S/B ~ 1

- Project discussed at CERN as part of Physics Beyond Colliders
K\textit{EVER} - an experiment to measure $K_L \rightarrow \pi^0 \nu \nu$

Main detector/veto systems:
- **UV/AFC:** Active final collimator/upstream veto
- **LAV1-26:** Large-angle vetoes (26 stations)
- **LK\textit{r}** (LKr): NA48 liquid-krypton calorimeter
- **IRC/SAC:** Small-angle vetoes
- **CPV:** Charged-particle veto

Target sensitivity:
- 5 years starting Run 4
- ~ 60 SM $K_L \rightarrow \pi^0 \nu \nu$
- $S/B \sim 1$
- $\delta BR/BR(\pi^0 \nu \nu) \sim 20\%$

C. Lazzeroni @ PBC - nov 2017
Conclusions

Kaon physics has played a substantial role in establishing the basis of the SM

After more than 70 years, Kaons still provide stringent tests of the SM and ways to look beyond it, searching for NP (LFV/LNV, LU, exotics…… CPV….)

NA62 experiment

✓ running and collecting data for $K^+ \rightarrow \pi^+\nu\nu$ measurement
✓ 5% of 2016 statistics analysed, no signal observed, expected 0.064
✓ analysis of 2016 and 2017 data sets in progress, expect 10-15 SM events
✓ data taking will resume in 2018 and, possibly, after LS2

✓ Improved limits on the search of HNL, DP, other exotics….

Kaon measurements at the frontier of precision physics
A lot of exciting physics ahead!
Thank you!

1-2-2018

Giuseppina Anzivino
NA62 Penguins at work

Stay tuned!
Additional information
$K \rightarrow \pi \nu\nu$ prospects

- KOTO '15/'16 run ~ 2018
- KOTO upgrade SM > 2021
- NA62 $\sigma(10\%) \geq 2018$

Excluded by E391a

Current Grossman-Nir Limit

Grossman-Nir Bound

BR($K_L \rightarrow \pi^0 \nu\bar{\nu}$)

BR($K^+ \rightarrow \pi^+ \nu\bar{\nu}$)
K\textit{EVER} - timeline

Status and timeline

Project timeline - target dates:

- **2017-2018**: Project consolidation
 - Beam test of crystal pair enhancement
 - Consolidate the design

- **2019-2021**: Detector R&D

- **2021-2025**: Detector construction
 - Possible K12 beam test if compatible with NA62

- **2024-2026**: Installation during LS3

- **2026-**: Data taking beginning Run 4

Expression of Interest to SPSC

- Actively seeking new collaborators

- Institutes interested so far: Birmingham, Bristol, Charles U., Comenius U., Dubna, Ferrara, Florence, Frascati, George Mason U., Glasgow, La Sapienza, Louvain, Mainz, Moscow INR, Naples, Perugia, Pisa, Protvino, Sofia, Tor Vergata, Turin.