Comparison of timing cuts - ILD and CLIC_o3_v12

Sascha Dreyer

CLICdp software meeting

August 15, 2017

Study: ILD \leftrightarrow CLIC_o3_v12

- W jet mass distribution of CLIC_ILD (with overlay) and CLIC_o3_v12 (with and w.o. overlay) at 1.4 TeV
- ee \rightarrow qqqq, CLIC_ILD: id4034, CLIC_o3_v12: id8307 (official framework, production by Andre Sailer)
- Reconstructed using VLC jet clustering algorithm ($\beta = \gamma = 1.0$) using different radii
- W tagging via MC quarks, collections: tight, selected, loose

CLIC_ILD r = 0.8

 $CLIC_ILD r = 1.0$

Overview CLIC_o3_v12 with overlay

CLIC_o3_v12, tight, selected, loose

• r = 0.8

• r = 1.0

• All histograms scaled to same #entries: higher peak \rightarrow narrower distribution \rightarrow better

Overview CLIC_o3_v12 with overlay

• *r* = 1.2

Detailed comparison: Loose

Loosely selected PFOs, CLIC_o3_v12, CLIC_ILD

• r = 0.8

Loose collection usually not considered at 1.4 TeV but considerably better now
narrower distribution and peak closer to W mass

Detailed comparison: Selected

Selected PFOs compared, CLIC_o3_v12, CLIC_ILD

• *r* = 0.8

• r = 1.0

• Smaller difference, shift to slightly lower masses

• closer to W mass

Detailed comparison Tight selected

• r = 0.8

• Tight selected PFOs compared, CLIC_o3_v12, CLIC_ILD

cuts: (s > 1200 GeV, lcos(0) < 0.95, sample: ee->gggg 1.4 TeV #entries 000 cuts: (s > 1200 GeV, lcos(θ) < 0.95, sample; ee->gggg 1.4 TeV #entries 000 000 000 selected PFO: ected PEO CLIC o3 v12, max at: 81.4 CLIC o3 v12, max at: 79.1 W. tight selected PFOs W. tight selected PFOs ILD, max at: 80.6 ILD, max at: 80.6 VLC R: 0.8, B: 1.0, Y: 1.0 VLC R: 1.0, 3: 1.0, 7: 1.0 2000 2000 1000 1000 0 0 50 100 150 50 100 150 0 0 jet mass [GeV] jet mass [GeV]

• Tight selected PFOs show very similar W jet mass distributions

• r = 1.0

Study: Overlay

- $\bullet~$ ee \rightarrow qqqq, overlay: id8307. w.o. overlay: id8581
- Reconstructed using VLC jet clustering algorithm ($\beta = \gamma = 1.0$) using different radii
- W tagging via MC info, collections for overlay: Loose, Selected, TightSelected, all PFOs without overlay

$\mathsf{Overview} \text{ overlay} \leftrightarrow \mathsf{no} \text{ overlay}$

• r = 1.0 no overlay, overlay selected, overlay tight selected

Proposal for overlay

- maybe: use tight selected collection for W and Z at r = 1.0
- CLIC_o3_v12, CLIC_ILD
- W jet mass

• Z jet mass

Summary

Summary and Outlook

- Timing cuts seem to work 'out of the box' for new detector model and overlay
- Loosely selected PFOs perform much better compared to CLIC_ILD (narrower and higher peak)
- Loose cuts in total too loose (W mass peak at too high masses), selected and tight do far better job
- w.o. overlay: r=1.0 maximum closest to W mass
- Use tight selected PFO collection for W jet study at r=1.0?

Summar

Backup

Backup

