
# **Software Compensation Considerations**

Matthias Weber (CERN)

#### **Software Compensation**



Follow the procedure from software compensation paper draft https://arxiv.org/pdf/ 1705.10363.pdf



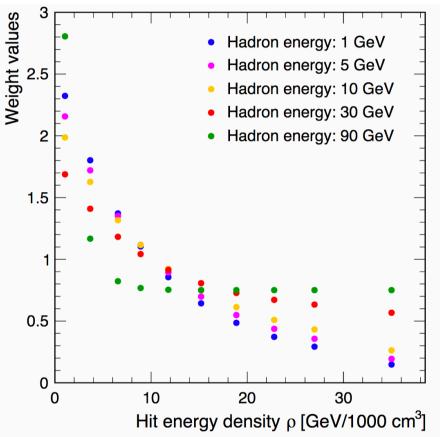
**Fig. 2** Distribution of the hit energy density for a sample of  $K_L^0$  and neutrons with 30 GeV energy. One MIP per cell corresponds to approximately 1 GeV / 1000 cm<sup>3</sup>. The differently shaded areas show the subdivision into energy density bins used for the software compensation.

Idea: reweight the hits of the HCAL shower with a weight depending on the energy density (hit energy divided by cell volume)  $\rightarrow$  electromagnetic component of the shower typically denser  $\rightarrow$  weight is monotonically falling with energy density

The energy of calorimeter clusters are computed as:

$$E_{SC} = \sum_{hits} E_{ECAL} + \sum_{bin i} (E^{i}_{HCAL} \times \omega(\rho_{i}))$$
  
with  $E^{i}_{HCAL} = \sum_{hits \in bin i} E_{hit}$ ,

$$\boldsymbol{\omega}(\boldsymbol{\rho}) = p_1 \exp(p_2 \boldsymbol{\rho}) + p_3$$

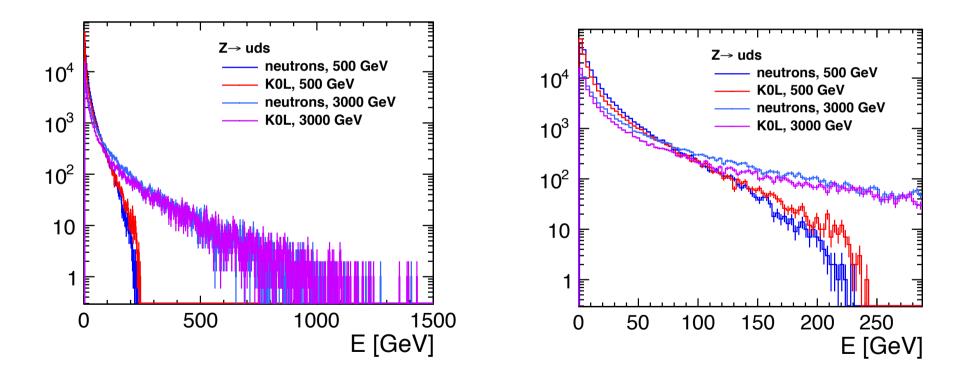

### **Software Compensation**



Follow the procedure from software compensation paper draft https://arxiv.org/pdf/ 1705.10363.pdf

$$p_1 = p_{10} + p_{11} \times E_{sum} + p_{12} \times E_{sum}^2$$
  
 $p_2 = p_{20} + p_{21} \times E_{sum} + p_{22} \times E_{sum}^2$   
 $p_3 = rac{p_{30}}{p_{31} + e^{p_{32} \times E_{sum}}}.$ 

The three parameters depend on the energy of the cluster →weight shape changes quite a bit for different input hadron energies




**Fig. 3** Software compensation weights as a function of hit energy density for different hadron energies, derived from Eq. 1.

#### Hadron spectrum for CLIC (Zuds 500 vs Zuds 3000 GeV)



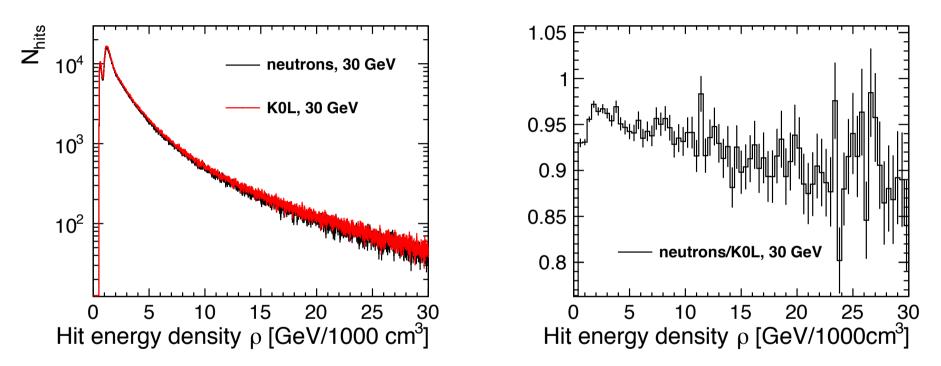
For 500 GeV dataset neutral hadron energies beyond 90 GeV are 1.9 %, for 3000 dataset 13.7 %  $\rightarrow$  if we want same coverage of neutral hadron energy spectrum need to calculate weights for samples up to 400 GeV (1.7 % beyond that point for 3000 GeV sample)



# Weight determination



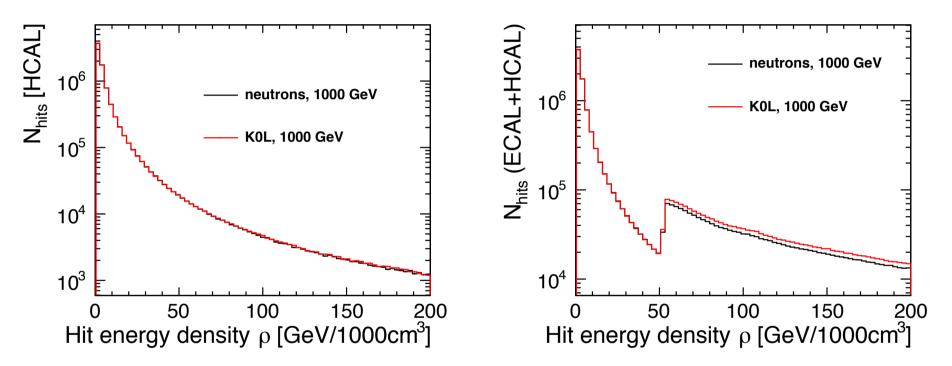
Software compensation weights are determined by minimisation of a  $\chi^2$  like function using all energy points and densities up to 30 GeV/1000 cm<sup>3</sup>


$$\chi^2 = \sum_{\text{events}} \frac{(E_{\text{hadron}} - E_{\text{SC}})^2}{(0.5)^2 E_{\text{hadron}}}$$

Overflow of densities beyond this point amount to 0.7 % to 3.1 % from 1 GeV to 90 GeV, at 250 GeV to 4.7 % and 5.9 % at 500 GeV (larger energies not necessary)

# Weight determination




Software compensation weights are determined by minimisation of a  $\chi^2$  like function using all energy points and densities up to 30 GeV/1000 cm<sup>3</sup>



Our spectrum looks slightly different than ILD's, preselection: exactly one cluster reconstructed (maybe condition more fullfilled for K0L's)

# Hit energy density for 1000 GeV neutral hadrons

Software compensation weights are determined by minimisation of a  $\chi^2$  like function using all energy points and densities up to 30 GeV/1000 cm<sup>3</sup>



Quite a few hits with high energy density, ECAL densities start at 50 GeV/1000cm<sup>3</sup> (ECAL hits not reweighted at the moment)