

3-flavor Neutrino Oscillations: A well established phenomena

Experimentally confirmed that only three neutrinos couple to the Z boson

- Neutrinos oscillate and have tiny masses
- They come in 3 flavors in the SM
- Almost all of our results nicely fit the
 3 neutrino Oscillation scenario
 - 2 mass splittings and 3 mixing angles

The measurement of $\theta_{13} \approx 10^{\circ}$ opened door to CP violation in the leptonic sector!

Still many profound unknowns

- Are there more than 3 neutrino flavors?
 - do light sterile neutrinos exist?
- Is CP violated in the leptonic sector?
 - understanding matter anti-matter asymmetry?
- What is the Neutrino mass hierarchy?
 - which neutrino is the lightest?

Several anomalies that don't fit in the 3 oscillation scenario: A New Neutrino?

Experiment	Type	Channel	Significance
LSND	DAR	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ \mathrm{CC}$	3.8σ
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \ \mathrm{CC}$	3.4σ
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ \mathrm{CC}$	2.8σ

arXiv:1204.5379 (2012)

Still many profound unknowns

- Are there more than 3 neutrino flavors?
 - do light sterile neutrinos exist?
- Is CP violated in the leptonic sector?
 - understanding matter anti-matter asymmetry?
- What is the Neutrino mass hierarchy?
 - which neutrino is the lightest?

Short-Baseline Experiments (L~1 km)

Several anomalies that don't tit

A New Neutrino

Experiment	Type	Channel	Significance
LSND	DAR	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ \mathrm{CC}$	3.8σ
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \ \mathrm{CC}$	3.4σ
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \ \mathrm{CC}$	2.8σ
a (XAV: 12D4X5359A (2)H 2	Source - e capture	ν_e disappearance	
		$\bar{\nu}_e$ disappearance	

The MicroBooNE Experiment

The Short-Baseline Neutrino Program

- MicroBooNE is paving way for the three-detector SBN program to more definitively address the sterile neutrino question where we have existing hints
 - Well understood BNB beam
 - Same detector technologies, same beam = reduced systematics!

υ_e Appearance Signal

(look for excess of v_e events)

cannot measure the neutrino flavor directly, only through the outgoing lepton

Example v_e appearance signal and background

- Charged-current events typically signal events
- Can use out-going lepton to tag neutrino flavor

- Neutral-current events typically background events
- no way to tag the neutrino flavor

The MicroBooNE LArTPC

- LArTPC = Liquid Argon Time Projection Chamber
- Surface-based, 89-ton active volume liquid argon
- One drift chamber
 - Cathode at -70kV
 - Drift at 2.56 m
 - E-field at 273 V/cm
- Three wire planes
 - 2 induction, 1 collection
 - 3 mm wire pitch
 - 3 mm wire plane spacing
- PMT and UV Laser System
- Collecting cosmic and neutrino data since Fall 2015

E = 273 V/cm

8

The LArTPC Principle

- Argon makes a desirable target (dense, abundant,...)
- Two signals: Ionization signal & Scintillation light
- Finely (mm-scale) segmented anode wires excellent resolution!
- Bubble chamber quality images in HD!
- Technology allows for scalability can build massive detectors

Wire Planes + Signal
Arrival Time
= 3D Image

A neutrino event in MicroBooNE LArTPC

Wire direction

MicroBooNE Goals

High Resolution Detector

- e/ γ shower separation: via both event topology and early dE/dx
- Neutrino energy reconstruction, hadron kinematics come into play
 - Fine grained tracking
 - event classification in terms of final state topology
 - Ability to reconstruct hadrons

Automated Proton Track Identification

Upgrades: Cosmic Ray Tagger System

- Plastic Scintillator Modules & SiPM readout
- Design & Construction paper under preparation for JINST
- Currently developing matching techniques between TPC and CRT

MicroBooNE Operations

- TPC running stably since October 2015
- 97% beam uptime with full CRT since March 2017
- Accumulated more than 7.5E20 POT BNB data, 2.5E20 POT with CRT.

- Argon purity critical for LArTPC operation
- Electro-negative impurities (O_2 and H_2O) in argon can absorb drifting electrons
- Achieved 3 times the design goal for purity within 30 days of operation!

Date	Note		Title			
08/30/17	MICROBOONE-NOTE- 1026-PUB		A Measurement of the Attenuation of Drifting Electrons in the MicroBooNE LArTPC			
07/22/17	MICROBOONE-NOTE- 1028-PUB	_	Establishing a Pure Sample of Side-Piercing Through- Going Cosmic-Ray Muons for LArTPC Calibration in MicroBooNE			
06/04/17	MICROBOONE-NOTE- 1024-PUB		econstructed Charged Particle autrino Interactions in MicroBooNE			
01/26/17	MICROBOONE-NOTE- 1025-PUB	Proton Track Ident Neutral Current Els	ication in MicroBooNE Simulation for astic Events			
11/29/16	MICROBOONE-NOTE- 1018-PUB	Study of Space (Publications/Docume			
07/04/16	MICROBOONE-NOTE- 1017-PUB	A Method to Extr the TPC Wire Pla	MicroBooNE collaboration, "			
07/04/16	MICROBOONE-NOTE- 1016-PUB	Noise Characteri TPC	 Quantitative Evaluation with MicroBooNE collaboration, " 			
07/04/16	MICROBOONE-NOTE- 1015-PUB	The Pandora mul pattern recognition	MicroBooNE collaboration, " Small Futured Coamic Boy 6			
07/04/16	MICROBOONE-NOTE- 1014-PUB	A Comparison of from MicroBooNi	Small External Cosmic Ray C MicroBooNE collaboration, "			
07/04/16	MICROBOONE-NOTE- 1013-PUB	MicroBooNE Det	JINST 12, P08003 (2017), Fe MicroBooNE collaboration, " OrVivi1704 02027, UNIST 12.			
07/04/16	MICROBOONE-NOTE- 1012-PUB	Demonstration of MicroBooNE Dat	 arXiv:1704.02927, JINST 12, MicroBooNE collaboration, " Multiple Coulomb Scattering 			
07/04/16	MICROBOONE-NOTE- 1010-PUB	Selection and kir current inclusive data	 MicroBooNE collaboration, " Chamber", arxiv:1611.05531, MicroBooNE collaboration, " 			
07/01/16	MICROBOONE-NOTE- 1008-PUB	Michel Electron F LArTPC Cosmic Da				
05/03/16	MICROBOONE-NOTE- 1006-PUB		Event Selection for Neutral Current 0 Production in MicroBooNE			
05/30/16	MICROBOONE-NOTE- 1005-PUB	Cosmic Shielding	Cosmic Shielding Studies at MicroBooNE			
11/06/15	MICROBOONE-NOTE- 1004-PUB		MC performance study for an early numu charged- current inclusive analysis with MicroBooNE			
05/29/16	MICROBOONE-NOTE- 1003-PUB		Measurement of the Electronegative Contaminants and Drift Electron Lifetime in the MicroBooNE Experiment			
11/02/15	MICROBOONE-NOTE- 1002-PUB		First neutrino interactions observed with the MicroBooNE Liquid-Argon TPC detector			
08/28/15	MICROBOONE-NOTE- 1001-TECH	Noise Dependence on Temperature and LAr Fill Level in the MicroBooNE Time Projection Chamber				

MicroBooNE Publications & Public Notes

7 Publications, 19 public notes (8 more in the pipeline)

Publications/Documents by the MicroBooNE Collaboration

15

- MicroBooNE collaboration, "Ionization Electron Signal Processing in Single Phase LAr TPCs I: Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation", arXiv:1802.08709, submitted to JINST
- MicroBooNE collaboration, "The Pandora Multi-Algorithm Approach to Automated Pattern Recognition of Cosmic Ray Muon and Neutrino Events in the MicroBooNE Detector", arXiv:1708.03135, Eur. Phys. J. C78, 1, 82 (2018)
- MicroBooNE collaboration, "Measurement of Cosmic Ray Reconstruction Efficiencies in the MicroBooNE LAr TPC Using a Small External Cosmic Ray Counter", arXiv:1707.09903, JINST 12, P12030 (2017)
- MicroBooNE collaboration, "Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC", arXiv:1705.07341,
 JINST 12, P08003 (2017), Fermilab News article (07/05/17)
- MicroBooNE collaboration, "Michel Electron Reconstruction Using Cosmic Ray Data from the MicroBooNE LAr TPC", arXiv:1704.02927, JINST 12, P09014 (2017)
- MicroBooNE collaboration, "Determination of Muon Momentum in the MicroBooNE LAr TPC Using an Improved Model of Multiple Coulomb Scattering", arXiv:1703.06187, JINST 12 P10010 (2017)
- MicroBooNE collaboration, "Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber", arxiv:1611.05531, JINST 12, P03011 (2017)
- MicroBooNE collaboration, "Design and Construction of the MicroBooNE Detector", arxiv:1612.05824, JINST 12, P02017 (2017)

Papers in all categories

- Construction & Operation
- Detector Physics
- Reconstruction Techniques
- Towards Cross-section Measurements
- Towards Oscillation Measurements

TPC Noise Filtering

- Several noise sources were identified and mitigated: both Hardware upgrades & Noise filtering techniques
- Peak Signal-to-Noise Ratio
 - > 16 (induction planes)
 - > 35 (collection plane)

Significantly lower noise levels achieved in a 100-ton scale LArTPC

Example of Excess Noise

MicroBooNE Preliminary

from baseline

Fully Automated Track Reconstruction

- Surface location = multiple cosmic tracks
- Developing and Testing our reconstruction & calibration on Cosmics

Space charge Effects

- Build up of slow moving Ar+ ions in the detector due to e.g. cosmic rays results in
 - 5 to 12% variation (drift) in E-field w.r.t. nominal
 - 5 cm (drift) and 12 to 15 cm (non-drift) spatial variation

First Measurement using tracks from a small Muon **Counter System (MuCS)**

> — limited angular coverage

- Data and MC reasonably agree in basic shape and normalization
- Measurements for the full TPC volume planned with laser & larger CRT

1.5

X [m]

0.5

18

Electron Drift-lifetime & Argon purity

Measurement done using Anode-Cathode crossing *Cosmic muons* from data

- > >18 ms electron lifetime!
- Maximum charge loss 12%
- MicroBooNE Purification system is performing exceptionally well!
- Space charge biggest systematic will improve with future data measurements

Space charge has significant impact on dQ/dx through recombination

Michel Electrons from Cosmic Data

- Physics Motivation
 - SuperNovae/Low-Energy Physics
 - Study detector response to low energy electrons (up to ~50 MeV)

JINST 12 P09014 (2017)

- Complex Reconstruction
- Reconstruction spectrum deficient due to escaping charge from radiative photons
- 20% energy resolution

First study of radiative photons from tens-of-MeV electrons in LArTPC

Neutrino Cross-Section data on Argon?

The multi-kiloton LArTPC program critically depends on how much v-Ar cross-section knowledge we gain in the next few years

First neutrino analysis: Charged Curren ν_{μ} inclusive

Signature: Look for a muon (plus anything) in the final state with an associated neutrino vertex

Importance

- First step towards a cross section measurement
- Will develop the reconstruction and systematics tools needed for final state topologies
- Lets you compare data between various experiments
- Fully automated reconstruction & event selection
- Purity: 60%
- Acceptance x Efficiency: 30%
 - Containment & Min. length cut for 1 track events
 - Cosmic backgrounds a challenge

	Before Selection	After Selection
CCQE	60%	43%
RES	30%	42%
DIS	10%	14%

$CC \nu_{\mu}$ inclusive event distributions

Building on CC ν_{μ} inclusive analysis: Charged Particle Multiplicity

- Directly observable quantity
- Stringent test for v event generators inclusively
- Compared charged particle multiplicity from data and different GENIE generator models

- Some under-prediction and over-prediction
- Future comparisons will involve more widely varying model predictions

First measurement of charged track multiplicity in ν_{μ} CC interactions in Ar

Building on CC ν_μ inclusive analysis: Charged Current π^0 events

Key sample towards developing low energy excess analysis

- Study shower reconstruction performance
- Energy calibration tests with π^0 mass peak
- NC π^0 background estimation

Currently working towards world's first measurement of CC π^0 cross-section measurement on argon

Reconstruction & Particle ID

Deep Learning techniques

JINST 12, P03011(2017)

Developing multiple approaches for the flagship oscillation analysis

Summary

- MicroBooNE is taking data stably since August 2015 and is continuously analyzing it at all levels
- Made enormous progress in understanding the detector and the technology
- Automatic Reconstruction algorithms Performing well and are continuously being improved
- Cosmic backgrounds being mitigated by the external large Cosmic Ray Tagger System
- Many more analyses in pipeline, Stay tuned for more exciting results from MicroBooNE soon!
- MicroBooNE is in an excellent place to address both *technical* and *measurement* challenges for both SBN and the multi-kiloton long-baseline DUNE program

Thank you!

Backup

High Δm^2 results: the MiniBooNE experiment

Same L/E $_{\rm v}$ (~ 1m/MeV) as LSND – entirely different systematics and backgrounds than LSND

What can MicroBooNE tell us about the MiniBooNE low-E excess?

MicroBooNE is capable of telling us whether the excess is electron-like or photon-like

While MicroBooNE can address a critical piece of short-baseline puzzle,

MicroBooNE by itself is not enough to explore the complete sterile neutrino oscillation parameter space

SBN: $\nu_{\mu} \rightarrow \nu_{e}$ appearance sensitivity

The LSND 99% C.L. allowed region is covered at the $\geq 5\sigma$ level above $\Delta m^2 = 0.1 \text{ eV}^2$

SBN: v_µ disappearance sensitivity

SBN can extend the search for muon neutrino disappearance an order of magnitude beyond the combined analysis of SciBooNE and MiniBooNE.

Neutrino-Argon Interactions

Understanding v-N cross-sections over the energy range valid for short and long baseline experiments is vital for any oscillation measurement!

Competitive physics processes and complicated nuclear effects in the 1 GeV range!

Neutrino-nucleus interactions

Why Liquid Argon as nuclear target?

- dense & Abundant (1% of atmosphere)
- easily ionizable (55,000 electrons/cm)
- highly scintillating (transparent to light produced)
- Pure argon results in high electron mobility => long drift lengths

	0	Ne	Ar	Kr	Xe	Water
Boiling Point [K] @ 1atm	4.2	27.1	87.3	120.0	165.0	373
Density [g/cm³]	0.125	1.2	1.4	2.4	3.0	1
Radiation Length [cm]	755.2	24.0	14.0	4.9	2.8	36.1
dE/dx [MeV/cm]	0.24	1.4	2.1	3.0	3.8	1.9
Scintillation [γ/MeV]	19,000	30,000	40,000	25,000	42,000	
Scintillation λ [nm]	80	78	128	150	175	

CREDIT: M. SODERBERG

Major R&D milestones from MicroBooNE

SURGE PROTECTION DEVICES

S. Gollapinni *et al.*, JINST 9, T11004 (2014), JINST 9 P09002 (2014)

PURITY WITHOUT EVACUATION

CRYOGENICS

TPC Signal Processing

Typically expect
signal to be
induced on only
one wire. But, in
reality, nearby wires
also see some
signal

Weighting potential of a wire

arXiv:1802.08709v2 (submitted to JINST)

Neutrino Candidate event from MicroBooNE data

Space Charge Measurement Improvements

- Space Charge Measurement being improved combining various calibration sources
 - UV Laser calibration data
 - Cosmic rays tagged using the larger CRT system
- Laser an ideal source to do 3D calibration for space charge
- Also need to understand how liquid argon flow impacts ion movement

Pandora Reconstruction Performance

#Matched Particles	0	1	2	3+
μ	1.3%	95.8%	2.9%	0.1%
p	8.9%	87.3%	3.6%	0.2%

Pandora Reconstruction Performance

#Matched Particles	0	1	2	3+
μ	3.5%	95.1%	1.4%	0.0%
p	9.0%	86.8%	4.0%	0.3%
π^+	6.9%	80.9%	11.4%	0.8%

Pandora Reconstruction Performance

#Matched Particles	0	1	2	3+
μ	3.7%	94.8%	1.5%	0.0%
p	9.9%	85.5%	4.3%	0.3%
γ1	6.8%	88.0%	4.8%	0.4%
γ2	29.9%	66.4%	3.6%	0.2%

Proton decay background

Some GUT models explicitly break the baryon number symmetry predicting proton decay

MicroBooNE is not big enough to study proton decay itself

- But, MicroBooNE can study proton decay backgrounds for future experiments!

Proton decay background

A cosmic muon interacts in a rock near the detector, produces a K_L^0 which then charge exchanges, $K_I^0 p \to K^+ n = looks like a <math>K^+$ from proton decay if right energy (339 MeV/c).

Decay mode of interest to MicroBooNE: $p \to K^+ v$; $K^+ \to \mu^+ v_\mu$; $\mu^+ \to e^+ v_e$ (anti- v_μ)

- the distinct dE/dx pattern enables study of this 3-fold decay mode

From J. Esquivel

Supernovae neutrinos

A core-collapse supernova (SN) produces a burst of neutrinos of all flavors

(in few-tens-of-MeV range)

→ physics of oscillations of SN neutrinos holds key astronomical phenomena

Water and liquid scintillator neutrino detectors, \rightarrow primarily sensitive to electron anti-neutrinos anti- $v_e + p \rightarrow n + e^+$ (inverse beta decay on free protons)

LArTPCs posses unique capability to detect SN electron neutrinos

1. CCv_e capture of SN neutrinos on Ar $v_e + Ar^{4\theta}(18) \rightarrow K^{4\theta}(19) + e^-$

Other processes:

- 2. Neutral current excitation of Ar⁴⁰ $v_{e,\mu,\tau} + Ar^{40}(18) \rightarrow Ar^{*40}(18) + v_{e,\mu,\tau}$
- 3. Elastic scattering off electron $v_{e,\mu,\tau} + e^- \rightarrow v_{e,\mu,\tau} + e^-$

Supernovae neutrinos

Detection requires sensitivity to low-energy gammas (<50 MeV) and electrons

 CCv_e capture on Ar can be tagged via the coincidence of emitted electron and accompanying de-excitation gamma cascade

Due to small size of MicroBooNE,

- will only see about 10-20 SN neutrinos in a duration of about 20 seconds
- A multi-kiloton detector (like LBNE) will be able to see a few hundred SN events!

Triggering on Supernovae events,

- MicroBooNE sits just below surface, too much cosmic traffic to have its own trigger!
- MicroBooNE will subscribe to SNEWS!