ATLAS results on Higgs decays to bb and µµ

Aspen 2018
The Particle Frontier
30 March 2018

ATLAS results on Higgs decays to bb and µµ

Aspen 2018
The Particle Frontier
30 March 2018

- Motivation
- VH, H->bb
- ttH, H->bb
- H->μμ
- Prospects

Motivations

- Higgs discovery: bosonic decay modes
- Direct measurement of couplings to 3rd-generation fermions more difficult
 - H->bb : an important missing piece
 - largest branching fraction (~58%)
 - direct probe of coupling to quarks
 - drives the uncertainty on the total decay width (and therefore the measurement of absolute couplings)

Run 1 combined ATLAS+CMS: H->bb expected 3.7 σ , measured 2.6 σ

- ttH: indirect measurement via gluon—gluon fusion production
- H-> $\tau\tau$: not discussed here; 5.9 σ observation by CMS, Phys. Lett. B 779 (2018) 283 4.5 σ evidence by ATLAS JHEP 04 (2015) 117
- Couplings to 2nd-generation fermions much weaker -> test of Yukawa mechanism
 - H->μμ : very low branching fraction (~0.02%); could be enhanced by BSM

VH, H->bb signatures and selection

Capture events through 0-, 1-, and 2-charged lepton channels (e/µ)

Z H b b

0-lepton

MET > 150 GeV

(+ multijet suppression)

1-lepton

W H b

 $p_{T}(V) > 150 \text{ GeV}$ isolated lepton MET > 30 GeV (ele channel) Z b b b

2-lepton

75< p_{T} (V)<150 GeV or p_{T} (V)>150 GeV 81<m(ℓ)<101GeV

2 or ≥3 jets

Tag b-jets for H reconstruction

Exactly 2 or 3 jets

2 b-tagged jets with p_T >20 GeV, lead jet > 45 GeV

Trigger based on single lepton and MET signatures

Fit data to determine signal

Improvements

- b-tagging:
 new innermost pixel layer (IBL) for Run 2
 + updated MVA algorithm
 - -> significantly improves efficiency and c-jet rejection

m_{bb} corrections:
 μ-in-jet, b-jet energy response
 correction, kinematic likelihood fit (2-lep)
 -> m_{bb} resolution improved by 18–40%

VH, H->bb multivariate analysis

- Event-level variables including $m_{\rm bb}$ used in TMVA to train BDT for each signal channel and analysis region
- Likelihood fit applied across channels/regions to extract signal strength μ and normalisations of main backgrounds
- Shapes and relative normalisations across regions parametrised by nuisance parameters, constrained within allowed systematic uncertainties

Variable	0-lepton	1-lepton	2-lepton	
$p_{ m T}^V$	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	
$E_{ m T}^{ m miss}$	×	×	×	
$p_{ m T}^{b_1}$	×	×	×	
$p_{ m T}^{ar{b}_2}$	×	×	×	
m_{bb}	×	×	×	
$\Delta R(ec{b}_1,ec{b}_2)$	×	×	×	
$ \Delta \eta(ec{b}_1,ec{b}_2) $	×			
$\Delta\phi(ec{V}, bec{b})$	×	×	×	
$ \Delta \eta(ec{V}, ec{bb}) $			×	
$m_{ m eff}$	×			
$\min[\Delta\phi(ec{\ell},ec{b})]$		×		
$m_{ m T}^W$		×		
$m_{\ell\ell}$			×	
$m_{ m top}$		×		
$ \Delta Y(ec{V}, bec{b}) $		×		
	Only in 3-jet events			
$p_{ m T}^{ m jet_3}$	×	×	×	
m_{bbj}	×	×	×	

JHEP 12(2017)024

VH, H->bb backgrounds

- Non-resonant backgrounds from W+jets, Z+jets, ttbar, and single top
- W+jets / Z+jets mainly suppressed by b-jet requirement (except W/Z+bb)
- ttbar mainly suppressed by N_{iet} requirement
- Resonant VZ, Z->bb backgrounds used to validate analysis procedure

VH, H->bb background strategy

VZ, Z->bb validation

• Use same variables to train BDT_{VZ} with VZ, Z->bb as signal \rightarrow adapted for different mass, softer p_T spectrum

$$\mu = \frac{\sigma x Br}{(\sigma x Br)_{SM}}$$

JHEP 12(2017)024

 observe VZ, Z->bb with 5.8σ significance (5.3σ expected)

validates BDT analysis

VH, H->bb results

- Observe VH,H->bb excess with 3.5 σ significance (3.0 σ expected)
- Evidence of VH(bb) !

Consistent in WH and ZH; measure:

$$\sigma(WH)xBr(H->bb) = 1.08 ^{+0.54}_{-0.47} pb$$

 $\sigma(ZH)xBr(H->bb) = 0.57 ^{+0.26}_{-0.23} pb$

JHEP 12(2017)024

VH, H->bb validation

- Alternative approach as validation of BDT analysis: fit to $m_{\rm bh}$
 - + additional category $p_T(V) > 200 \text{ GeV}$
 - + additional cut on $\Delta R(b_1,b_2)$

JHEP 12(2017)024

- Higgs signal strength μ =1.30 $^{+0.28}_{-0.27}$ (stat.) $^{+0.37}_{-0.29}$ (sys)
- 3.5σ observed significance (2.8σ expected)
- consistent with BDT analysis

All analysis regions combined, weighted by their m_{bb} [GeV] S/B, with all backgrounds except VZ subtracted

VH, H->bb dominant uncertainties

12

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source of unc	certainty	σ_{μ}		
	Total		0.39		
	Statistical		0.24		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Systematic		0.31		
$ \begin{array}{c c} E_{\rm T}^{\rm miss} & 0.03 \\ \text{Leptons} & 0.01 \\ \hline \\ b\text{-tagging} & \begin{array}{c} b\text{-jets} & 0.09 \\ c\text{-jets} & 0.04 \\ \text{light jets} & 0.04 \\ \text{extrapolation} & 0.01 \\ \hline \\ Pile-up & 0.01 \\ \text{Luminosity} & 0.04 \\ \hline \\ Theoretical and modelling uncertainties} \\ \hline \\ Signal & 0.17 \\ \hline \\ Floating normalisations & 0.07 \\ Z+\text{jets} & 0.07 \\ W+\text{jets} & 0.07 \\ \hline \\ t\bar{t} & 0.07 \\ Single top quark & 0.08 \\ \hline \end{array} $	Experimenta	l uncertainties			
Leptons 0.01 b -jets 0.09 c -jets 0.04 light jets 0.04 extrapolation 0.01 Pile-up 0.01 Luminosity 0.04 Theoretical and modelling uncertaintiesSignal 0.17 Floating normalisations 0.07 Z + jets 0.07 W + jets 0.07 $t\bar{t}$ 0.07 Single top quark 0.08	0000		0.03		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_{ m T}^{ m miss}$		0.03		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.01		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$b ext{-jets}$	0.09		
$\begin{array}{c c} \text{Pile-up} & 0.01 \\ \hline \text{Luminosity} & 0.04 \\ \hline \text{Theoretical and modelling uncertainties} \\ \hline \text{Signal} & 0.17 \\ \hline \\ \text{Floating normalisations} & 0.07 \\ Z + \text{jets} & 0.07 \\ W + \text{jets} & 0.07 \\ t\bar{t} & 0.07 \\ \hline \\ \text{Single top quark} & 0.08 \\ \hline \end{array}$	b-tagging	$c ext{-jets}$	0.04		
$\begin{array}{c c} \text{Pile-up} & 0.01 \\ \hline \text{Luminosity} & 0.04 \\ \hline \text{Theoretical and modelling uncertainties} \\ \hline \text{Signal} & 0.17 \\ \hline \\ \text{Floating normalisations} & 0.07 \\ Z + \text{jets} & 0.07 \\ W + \text{jets} & 0.07 \\ t\bar{t} & 0.07 \\ \hline \\ \text{Single top quark} & 0.08 \\ \hline \end{array}$		light jets	0.04		
Luminosity 0.04 Theoretical and modelling uncertaintiesSignal 0.17 Floating normalisations 0.07 $Z + \text{jets}$ 0.07 $W + \text{jets}$ 0.07 $t\bar{t}$ 0.07 Single top quark 0.08			0.01		
Luminosity 0.04 Theoretical and modelling uncertaintiesSignal 0.17 Floating normalisations 0.07 $Z + \text{jets}$ 0.07 $W + \text{jets}$ 0.07 $t\bar{t}$ 0.07 Single top quark 0.08	'	-			
	Pile-up		0.01		
Signal 0.17 Floating normalisations 0.07 $Z + \text{jets}$ 0.07 $W + \text{jets}$ 0.07 $t\bar{t}$ 0.07 Single top quark 0.08	Luminosity		0.04		
Floating normalisations 0.07 $Z + \text{jets}$ $W + \text{jets}$ $t\bar{t}$ Single top quark 0.07	Theoretical and modelling uncertainties				
Z + jets 0.07 W + jets 0.07 $t\bar{t}$ 0.07 Single top quark 0.08	Signal		0.17		
Z + jets 0.07 W + jets 0.07 $t\bar{t}$ 0.07 Single top quark 0.08					
W + jets 0.07 $t\bar{t}$ 0.07 Single top quark 0.08	Floating norn	${ m malisations}$	0.07		
W + jets 0.07 $t\bar{t}$ 0.07 Single top quark 0.08	Z + jets		0.07		
$t\overline{t}$ 0.07 Single top quark 0.08		0.07			
	•	0.07			
	Single top quark		0.08		
			0.02		
Multijet 0.02			0.02		
	v				

MC statistical

Systematic uncertainties are dominant:

- Background modelling improved modelling needed, especially for extrapolation from control regions
- B-tagging calibration uncertainty MC-to-data correction factors parametrised in p_T and η
- Signal modelling variations in $p_T(V)$, m_{bb} from changing QCD scale and PS tunes
- Monte Carlo statistics few events with high p_T , 2 b-tags, and high BDT values (despite generator slicing / filtering)

-> prospects for improvement!

JHEP 12(2017)024

VH, H->bb combined results

- Combination with 7 & 8 TeV results from LHC Run 1
 - combined observed significance 3.6σ (4.0σ expected)

consistent with Standard Model

JHEP 12(2017)024

ttH, H->bb categorization

- ttH measurements target top-Yukawa coupling
- exploit large Br(H->bb) => ttH(bb) gives important contribution ttH measurement

- Categorized into sub-channels to increase sensitivity
 - number of leptons, number of jets, and b-tags corresponding to different working points:

	none	loose	medium	tight	very-tight
Efficiency	_	85%	77%	70%	60%
Discriminant value	1	2	3	4	5

2-lepton

1-lepton

- Exactly two opposite-sign leptons, veto Z-candidates, no hadronic τ
- Require ≥3 jets
 and ≥2 medium b-tagged jets

- Exactly one lepton
- Resolved category:
 ≥5 jets & ≥2 very-tight or ≥3 medium b-tagged jets
- Boosted category: reconstruct Higgs and top decay products in two large R=1.0 jets, p_T(H)>200GeV, p_T(t)>250GeV

ttH, H->bb regions

Regions constructed for 3 and ≥4 jets (2-lepton)
 and for 5 and ≥6 jets (1-lepton) (boosted channel is not categorized further)

- Control regions for tt+b, tt+c and tt+light to constrain background systematics
- Highest signal purity is in 4 very-tight b-tag bins

ttH, H->bb multivariate analysis

- In signal regions, MVA techniques used to separate signal and background arXiv:1712.08895
- Reconstruction BDT (all resolved SRs)
 identify best assignment of jets to partons from ttH(bb)

discriminating variables e.g. $m_{\rm bb}$ $\Delta \eta_{\rm bb}$

-> all inputs to classificationBDT for sig/ bck separation

- Likelihood discriminator (1-lep resolved SRs only)
 probability of signal/background based on PDFs for each
- Matrix Element (SR≥6 only)
 likelihood estimation from ME method

16

ttH, H->bb fit

ttH, H->bb results

Δ	μ
+0.46	-0.46
+0.29	-0.31
+0.16	-0.16
+0.14	-0.14
+0.22	-0.05
+0.29	-0.29
+0.64	-0.61
	+0.29 $+0.16$ $+0.14$ $+0.22$ $+0.29$

modelling of tt+hf background is limiting factor

ttH(bb) at 1.4σ observed
 (1.6σ expected)

submitted to PRD

 combine with ttH multilepton and subcategories of H->γγ and H->ZZ
 –> evidence for ttH production observed at 4.2σ

Channel	Best-fit μ		Significance	
	Observed Expected		Observed	Expected
Multilepton	$1.6_{-0.4}^{+0.5}$	$1.0 ^{\ +0.4}_{\ -0.4}$	4.1σ	2.8σ
$H \to b \bar b$	$0.8_{-0.6}^{+0.6}$	$1.0 ^{\ +0.6}_{\ -0.6}$	1.4σ	1.6σ
$H \to \gamma \gamma$	$0.6_{-0.6}^{+0.7}$	$1.0^{+0.8}_{-0.6}$	0.9σ	1.7σ
$H \to 4\ell$	< 1.9	$1.0_{-1.0}^{+3.2}$	_	0.6σ
Combined	$1.2^{+0.3}_{-0.3}$	$1.0^{\ +0.3}_{\ -0.3}$	4.2σ	3.8σ

arXiv:1712.08891 submitted to PRD

Η->μμ

- Clean experimental signature
- Excellent mass resolution
- but small Br ~ 2.18x10⁻⁴
 - -> tiny signature buried under Drell-Yan
- Selection:

two isolated muons with $p_{\rm T}$ > 15GeV MET < 80 GeV b-jet veto 110 < $m_{\rm uu}$ < 160 GeV

- Six gluon-gluon fusion categories based on η_{μ} and $p_{\rm T}^{\mu\mu}$
- Two VBF categories = with N_{jets}≥2, selected by a BDT
- ◆ S/√B=0.37 in VBF tight region!

PRL 119 (2017) 051802

H->μμ results

• Fit di-muon mass spectra:

bump-hunt with parametrised background function (BW x Gauss + exp(A. $m_{\mu\mu}$) / $m_{\mu\mu}^{3}$ fit to data in sidebands)

simultaneous fit to observed $m_{\mu\mu}$ in all categories to extract signal strength

Dataset	Upper limit / SM (95%CL) observed (expected)	Signal strength
Run 2 (13 TeV)	3.0 (3.1)	-0.1 ± 1.5
Run 1 + Run 2 (7,8,13 TeV)	2.8 (2.9)	-0.1 ± 1.4

Statistics-limited

PRL 119 (2017) 051802

H->μμ candidate

Prospects

- All results shown with 36.1 fb⁻¹ data at \sqrt{s} =13TeV
- Run 2 total expected to be 120–150 fb⁻¹
- ◆ VH,Hbb: published result is systematics-dominated now working on background modelling, b-tagging, and MC stats in order to reach 5σ observation in Run 2. Beyond with HL-LHC: can study differential distributions
- ◆ ttH: working on background modelling,
 especially ttbb, towards 5σ observation in Run 2
- Hµµ: potential for combined ATLAS/CMS result to reach SM sensitivity with Run 2 data. HL-LHC: new ATLAS tracker layout -> 25% improvement in Hµµ mass resolution; 8.6 σ sensitivity estimated with 3000fb⁻¹ (assuming $<\mu>=200$)

ATLAS muon upgrade TDR, ATLAS-TDR-026 (2017)

Conclusions

- First LHC evidence for H->bb, in VH,H->bb at 3.6 σ with 36.1fb⁻¹ at \sqrt{s} =13TeV
 - signal strength uncertainty ~25–30%;
 consistent with SM
- First evidence for ttH production at 4.2σ with 36.1fb⁻¹ at \sqrt{s} =13TeV;
 - ttH,H->bb contributes 1.4σ
- Search for H-> $\mu\mu$ gives upper limit of 2.8 σ_{SM} xBr
 - potential for SM sensitivity with complete Run 2 dataset and ATLAS/CMS combination

-> Looking forward to 120–150 fb⁻¹!

Backups

VH generators

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section ace2.5cm order
Signal					
$qq \to WH$ $\to \ell \nu b\bar{b}$	Powheg-Box v2 [19] + GoSam [22] + MiNLO [23,24]	$NNPDF3.0NLO^{(\star)}$ [20]	Рутніа8.212 [13]	AZNLO [21]	NNLO(QCD)+ NLO(EW) [25,26,27,28,29
$qq o ZH \ o u u bar{b}/\ell\ell bar{b}$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO ^(*)	Рұтніа8.212	AZNLO	$\frac{\text{NNLO(QCD)}^{(\dagger)}}{\text{NLO(EW)}}$
$gg o ZH \ o u u bar{b}/\ell\ell bar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Рұтніа8.212	AZNLO	NLO+ NLL [32,33,34,35,36]
Top quark					
$t\overline{t}$ s -channel t -channel Wt	Powheg-Box v2 [37] Powheg-Box v1 [40] Powheg-Box v1 [40] Powheg-Box v1 [46]	NNPDF3.0NLO CT10 [41] CT10f4 CT10	Рутніа8.212 Рутніа6.428 [42] Рутніа6.428 Рутніа6.428	A14 [38] P2012 [43] P2012 P2012	NNLO+NNLL [39] NLO [44] NLO [45] NLO [47]
Vector boson + jet					
$W ightarrow \ell u \ Z/\gamma^* ightarrow \ell \ell \ Z ightarrow u u u$	SHERPA 2.2.1 [16,48,49] SHERPA 2.2.1 SHERPA 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	SHERPA 2.2.1 [50,51] SHERPA 2.2.1 SHERPA 2.2.1	Default Default Default	NNLO [52] NNLO NNLO
Diboson				-	
$egin{array}{c} WW \ WZ \ ZZ \end{array}$	SHERPA 2.1.1 SHERPA 2.2.1 SHERPA 2.2.1	CT10 NNPDF3.0NNLO NNPDF3.0NNLO	SHERPA 2.1.1 SHERPA 2.2.1 SHERPA 2.2.1	Default Default Default	NLO NLO NLO

VH background systematics

A VERTIAS VITA	
	Z + jets
Z + ll normalisation	18%
Z+cl normalisation	23%
Z + bb normalisation	Floating (2-jet, 3-jet)
Z + bc-to- $Z + bb$ ratio	30-40%
Z + cc-to- $Z + bb$ ratio	13-15%
Z + bl-to- $Z + bb$ ratio	20-25%
0-to-2 lepton ratio	7%
$m_{bb},p_{ m T}^V$	S
	W + jets
W + ll normalisation	32%
W + cl normalisation	37%
W + bb normalisation	Floating (2-jet, 3-jet)
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)
0-to-1 lepton ratio	5%
W + HF CR to SR ratio	$10\% \; (1-\mathrm{lepton})$
$m_{bb},p_{ m T}^V$	S
$t\bar{t}$ (all are uncorrelative)	ated between the 0+1 and 2-lepton channels)
$t\bar{t}$ normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)
0-to-1 lepton ratio	8%
2-to-3-jet ratio	9% (0+1 lepton only)
W + HF CR to SR ratio	25%
$m_{bb},p_{ m T}^V$	S
	Single top quark
Cross-section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)
Acceptance 2-jet	$17\% \ (t\text{-channel}), 35\% \ (Wt)$
Acceptance 3-jet	$20\% \ (t\text{-channel}), 41\% \ (Wt)$
$m_{bb},p_{ m T}^V$	S (t-channel, Wt)
	Multi-jet (1-lepton)
Normalisation	$60-100\% \text{ (2-jet)},\ 100-400\% \text{ (3-jet)}$
BDT template	${f S}$

V+jets normalisation / acceptance uncertainties from:

- -renorm & fact scales x0.5 and x2
- -CKKW merging scale 30->15GeV
- -parton shower/resum scale x0.5 and x2
- -difference with alternative ME (Madgraph5_aMC@NLO)

Shape distributions in $m_{\rm bb}$ and $p_{\rm T}{}^{\rm V}$ dominated by Sherpa vs Madgraph

ttbar Shape distributions in $m_{\rm bb}$ and $p_{\rm T}^{\rm V}$ dominated by Sherpa vs Madgraph

VH background systematics

	ZZ				
Normalisation	20%				
0-to-2 lepton ratio	6%				
Acceptance from scale variations (var.)	10 – 18% (Stewart–Tackmann jet binning method)				
Acceptance from PS/UE var. for 2 or more jets	5.6% (0-lepton), 5.8% (2-lepton)				
Acceptance from PS/UE var. for 3 jets	7.3% (0-lepton), 3.1% (2-lepton)				
$m_{bb}, p_{\mathrm{T}}^{V}, \text{ from scale var.}$	S (correlated with WZ uncertainties)				
$m_{bb}, p_{\mathrm{T}}^{V}, \text{ from PS/UE var.}$	S (correlated with WZ uncertainties)				
m_{bb} , from matrix-element var.	S (correlated with WZ uncertainties)				
WZ					
Normalisation	26%				
0-to-1 lepton ratio	11%				
Acceptance from scale var.	13-21% (Stewart–Tackmann jet binning method)				
Acceptance from PS/UE var. for 2 or more jets	3.9%				
Acceptance from PS/UE var. for 3 jets	11%				
$m_{bb}, p_{\mathrm{T}}^{V}, \text{ from scale var.}$	S (correlated with ZZ uncertainties)				
$m_{bb}, p_{\mathrm{T}}^{V}, \text{ from PS/UE var.}$	S (correlated with ZZ uncertainties)				
m_{bb} , from matrix-element var.	S (correlated with ZZ uncertainties)				
\overline{WW}					
Normalisation	25%				

VH signal systematics

28

Signal				
$0.7\% \; (qq), 27\% \; (gg)$				
$1.9\% \ (qq \to WH), \ 1.6\% \ (qq \to ZH), \ 5\% \ (gg)$				
1.7~%				
2.5-8.8% (Stewart–Tackmann jet binning method)				
10-14% (depending on lepton channel)				
13%				
0.5-1.3%				
${f S}$				

Regions used in likelihood fit

		Categories					
Channel	hannel SR/CR		$75 \text{ GeV} < p_{\text{T}}^{V} < 150 \text{ GeV} \mid p_{\text{T}}^{V} > 150 \text{ GeV}$				
		2 jets	3 jets	2 jets	3 jets		
0-lepton	SR	-	-	BDT	BDT		
1-lepton	SR	-	_	BDT	BDT		
2-lepton	SR	BDT	BDT	BDT	BDT		
1-lepton	W + HF CR	-	-	Yield	Yield		
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}		