Summary of Anomalies in the B-sector

Daniel Aloni

Searching for Physics Beyond the Standard Models Using Charged Leptons COFI, San Juan, Puerto Rico, 24 May 2018

Interpreting Hints for Lepton Flavor - Universality Violation -

Daniel Aloni

Searching for Physics Beyond the Standard Models Using Charged Leptons COFI, San Juan, Puerto Rico, 24 May 2018

Summary of Anomalies in the B-sector from a theorist point of view

Daniel Aloni

Searching for Physics Beyond the Standard Models Using Charged Leptons COFI, San Juan, Puerto Rico, 24 May 2018

Why is it interesting (1)?

Why is it interesting (1)?

$$egin{aligned} R(D) & B_s
ightarrow \mu \mu & R(K) \ P_5' & R(D^*) & ^{\Lambda_b
ightarrow \Lambda \mu \mu} \ R(K^*) & _{B
ightarrow K^* \mu \mu} & _{B
ightarrow K \mu \mu} & R(J/\psi) \end{aligned}$$

Why is it interesting (1)?

$$R(D)$$
 maybe σ $R(K)$ $S_s o \mu \mu$ $S_s o \mu \mu$

Why is it interesting (2)?

Why is it interesting - Belle2! First collision @ April 26 2018 Webcasted with 460k people watching O(once) in a life

Belle 2 is coming

- New e^+e^- asymmetric collider in the market
- Operate mostly at $\sqrt{s}=m_{\Upsilon(4s)}$ (B-factory)
- \bullet High luminosity $\sim 1/ab$ per month
- Will study B-physics, flavor physics,
 CP violation, and more
- We must ask: what else?

Outline

- $R(D^{(*)})$
- $R(K^{(*)})$
- Other anomalies in the B-sector

Where else to look

Summary

B mesons are puzzling

What is $R(D^{(*)})$?

•
$$R(D^{(*)}) \equiv \frac{BR(B \to D^{(*)} \tau \bar{\nu})}{BR(B \to D^{(*)} \ell \bar{\nu})}$$
 , $\ell = \mu, e$

What is $R(D^{(*)})$?

•
$$R(D^{(*)}) \equiv \frac{BR(B \to D^{(*)} \tau \bar{\nu})}{BR(B \to D^{(*)} \ell \bar{\nu})}$$
 , $\ell = \mu, e$

• At the quark level: $b \to c \tau(\ell) \bar{\nu}$

• SM: $b \to c\tau(\ell)\bar{\nu}$ transition is mediated by the W boson

The SM prediction

- Can we have any prediction?
- Yes we can!
 - → Semileptonic
 - Unknown parameters cancel in the ratio
 - ullet Can systematically expand in the heavy quark limit $m_b, m_c o \infty$
 - → Electroweak interactions are Lepton Flavor Universal

*
$$m_ au o m_\ell$$
 , R(D)=R(D*)=1

$$^{\star}~m_{ au}
ightarrow m_b$$
 , R(D)=R(D *)=0

→ We also have partial Lattice QCD results

The SM prediction

$R(D^*)$

- Lattice results only at zero recoil (preliminary away from zero recoil)
- Bernlochner, Ligeti, Papucci, Robinson (1703.05330)
 - NLO at HQET and perturbative QCD
 - Lattice + QCDSR
 - $R^{SM}(D^*) = 0.257 \pm 0.003$
- Bigi, Gambino, Schacht (1707.09509)
 - Assign 15% uncertainty to unknown NNLO
 - $R^{SM}(D^*) = 0.260 \pm 0.008$

The SM prediction

R(D)

- Lattice results are available to all (SM) form factors
- Lattice results at few kinematical points
- FLAG combination of FNAL/MILC and HPQCD (1607.00299):

$$R^{SM}(D) = 0.300 \pm 0.008$$

Bernlochner, Ligeti, Papucci, Robinson (1703.05330)

$$R^{SM}(D) = 0.299 \pm 0.003$$

Also experimentalists like ratios!

Most* of the experiments looked for muonic tau

^{*} Babar (1205.5442), Belle (1507.03233, 1607.07923), LHCb (1506.08614)

What is the experimental challenge?

Tau and muon have same topology

•
$$N_{\mu} \sim 20 \cdot N_{\tau}$$

- Need good discrimination between tau channel and muon channel
- "The most discriminating kinematic variables ... in the B rest Frame...":

$$E_{\mu}^{*}, \ m_{miss}^{2} = (p_{B}^{\mu} - p_{D^{*}}^{\mu} - p_{\mu}^{\mu})^{2}, \ q^{2} = (p_{B}^{\mu} - p_{D^{*}}^{\mu})^{2}$$

"Below" threshold

arXiv:1506.08614 [hep-ex]

Above threshold

arXiv:1506.08614 [hep-ex]

• Belle (1612.00529)

•
$$\tau^- \to \pi^- \nu_\tau$$
, $\tau^- \to \rho^- \nu_\tau$

 ullet au polarization asymmetry

$$P_{\tau}(D^*) = \frac{\Gamma(\lambda_{\tau} = 1/2) - \Gamma(\lambda_{\tau} = -1/2)}{\Gamma(\lambda_{\tau} = 1/2) + \Gamma(\lambda_{\tau} = -1/2)}$$

can be measured using angular distribution

$$d\Gamma/d\cos\theta \propto 1 + \alpha P_{\tau}\cos\theta ,$$

$$(\alpha_{\pi} = 1, \alpha_{\rho} = 0.45)$$

• LHCb (1708.08856)

• LHCb (1708.08856)

(* Use also
$$au o \pi^- \pi^+ \pi^- \pi^0
u_ au$$
)

• LHCb (1708.08856)

(* Use also
$$au o \pi^- \pi^+ \pi^- \pi^0
u_ au$$
)

Reducing the systematic uncertainties

Normalization:

$$\mathcal{K}(D^{*-}) \equiv \frac{BR(B^0 \to D^{*-}\tau^+\nu_{\tau})}{BR(B^0 \to D^{*-}3\pi)}$$

Problems:

- How to discriminate signal from normalization?
- How to discriminate signal from background?

Solution: Discriminate by using different (D^*) 3π kinematics

Measurement

- $^{ullet} \sim 4\sigma$ compared to HFLAV (out of date) SM prediction prediction
- Updated theoretical results ease (mildly) the tension

^{*}https://hflav.web.cern.ch/

A word on New physics

If we just re-scale the SM operator the effective Hamiltonian is

$$\mathcal{H} = \left(\frac{4G_F}{\sqrt{2}}V_{cb} + C_{NP}\right)\mathcal{O}_{V_L}$$

• Interfere with SM: 30% enhancement in the rate means $C_{NP} \sim 15\%\,C_{SM}$

The scale of new physics

$$C_{NP} \sim 1/m_{NP}^2 \Rightarrow m_{NP} \sim 1 \, TeV$$

$R(D^{(*)})$ - Summary

- $R(D^{(*)})$ is puzzling and shows $\sim 4\sigma$ deviation from SM prediction
- Updated SM predictions ease the tension but do not solve the puzzle
- LHCb with 13 TeV, and Belle 2 will shed light
- New physics (?) at the TeV scale

$$R(J/\psi) = \frac{BR(B_c \to J/\psi \tau \nu)}{BR(B_c \to J/\psi \mu \nu)}$$

$$R(J/\psi) = \frac{BR(B_c \to J/\psi \tau \nu)}{BR(B_c \to J/\psi \mu \nu)}$$

The experimental signature

 ullet By using muonic au the analysis is very similar

to $\mathcal{R}(D^*)$ with muonic au

Result and summary

$$\mathcal{R}(J/\psi) = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst})$$

- LHCb quote $\,R_{SM}(J/\psi) = 0.25 0.28\,$ which is $\,2\sigma$ below measurement
- ~100% disagreement on SM prediction in literature
- Interesting but not clear keep your eyes open
- First evidence ($>3\sigma$) for $\,B_c o J/\psi au
 u$

What is $R(K^{(*)})$?

•
$$R(K^{(*)}) \equiv \frac{"BR(B \to K^{(*)} \mu^{+} \mu^{-})"}{BR(B \to K^{(*)} e^{+} e^{-})}$$

What is $R(K^{(*)})$?

•
$$R(K^{(*)}) \equiv \frac{"BR(B \to K^{(*)} \mu^{+} \mu^{-})"}{BR(B \to K^{(*)} e^{+} e^{-})}$$

• At the quark level: $b o s\ell^+\ell^-$ b

SM: One loop process (Flavor changing neutral current)

The SM prediction

Correct definition includes kinematical range

$$R_{K^{(*)}}[q_{min}^2,q_{max}^2] \equiv \frac{\int_{q_{min}^2}^{q_{max}^2} dq^2 d\Gamma(B \to K^{(*)} \, \mu^+ \mu^-)/dq^2}{\int_{q_{min}^2}^{q_{max}^2} dq^2 d\Gamma(B \to K^{(*)} \, e^+ e^-)/dq^2}$$

 ullet For $q^2_{min}\gg m^2_\ell$ we expect

$$R_K = R_{K^*} = 1$$

Anatomy of $R(K^{(*)})$

Integrate out heavy d.o.f. - Effective Hamiltonian

• Penguins and Boxes:

$$\mathcal{O}_{9}^{\ell} \propto (\bar{s}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\ell)$$
$$\mathcal{O}_{10}^{\ell} \propto (\bar{s}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

Dipole operator

$$\mathcal{O}_7 \propto (\bar{s}\sigma^{\mu\nu}b)F_{\mu\nu}$$

Yasmine Amhis

Anatomy of $R(K^{(*)})$

 ullet Within the SM at the scale m_b accidentally $C_9^{SM} \simeq -C_{10}^{SM}$

$$\mathcal{O}_{SM} \sim (\bar{s}\gamma^{\mu}P_Lb)(\bar{\ell}\gamma_{\mu}P_L\ell)$$

- ullet At low q^2
 - ullet $R(K^*)$ Dominated by the photon pole
 - $^{ullet}\,R(K)\,$ No photon pole
- ullet At high q^2 dominated by the J/ψ resonance
- In between $R_K^{SM} = R_{K^*}^{SM} = 1$

Uncertainties

- Bordone, Isidori, Pattori (1605.07633)
 - Perturbative and non-perturbative QCD cancel in the ratio
 - Leading QED corrections are $(\alpha/\pi)log^2(m_B/m_\ell)$
 - ullet High q^2 but below J/ψ

$$R^{SM}(K) = R^{SM}(K^*) = 1 \pm 0.01_{QED}$$

- Low q^2
 - No perfect cancellation Form-factors uncertainties
 - Larger and subtle QED uncertainties

Experimentalists **really** like ratios!

Only measured by LHCb

Electrons and muons do not look the same

Electrons are difficult for LHCb

$$\begin{split} R_{K^{(*)}} &= \\ \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}J/\psi(\to \mu\mu))} \bigg/ \frac{BR(B \to K^{(*)}ee)}{BR(B \to K^{(*)}J/\psi(\to ee))} \end{split}$$

• J/ψ is known to be lepton flavor universal to the relevant accuracy

Electrons and Bremsstrahlung

The data samples

• 1406.6482

• 1705.05802

Results!

Results

- $R_K[1 \, GeV^2, 6 \, GeV^2] = 0.75 \pm 0.10$ $R_{K^*}[1.1 \, GeV^2, 6 \, GeV^2] = 0.69 \pm 0.12$ $R_{K^*}[0.045 \, GeV^2, 1.1 \, GeV^2] = 0.66 \pm 0.11$
- SM prediction for the low bin $R_{K^*,low}^{SM} \simeq 0.91$
- ullet Each measurement deviates by $\,\sim 2.1-2.6\sigma$ from SM prediction
- Low bin is confusing $~(4m_{\mu}^2\sim 0.045\,GeV^2)$. Hard to violate the photon universality
- Threshold effects are challenging both theoretically and experimentally

A word on New physics

If we just re-scale the SM operator the effective Hamiltonian is

$$\mathcal{H} = \left(\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{tb} V_{ts}^* + C_{NP}\right) \mathcal{O}_{LL}$$

• Interfere with SM: 30% reduction means $\ C_{NP} \sim 15\% \, C_{SM}$

The scale of (tree level) new physics

$$C_{NP} \sim 1/m_{NP}^2 \Rightarrow m_{NP} \sim 30 \, TeV$$

$R(K^{(*)})$ - Summary

- $R(K^{(*)})$ is puzzling and shows $\sim 2.5\sigma$ deviation from SM prediction for each measurement
- $R(K^*)$ at low q^2 is even more puzzling. It is preferred to measure away from threshold, e.g. from 0.1 GeV²
- LHCb with 13 TeV, and Belle 2 will shed light from the experiment side
- New physics at the 30 TeV scale

$$B_s \to \mu^+ \mu^-$$

• LHCb observed with 7.8σ significance (1703.05747)

$$BR(B_s \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

Fleischer, Jaarsma, Tetlalmatzi-Xolocotzi (1703.10160) updated
 Bobeth, Gorbahn, Hermann, Misiak, Stamou, Steinhauser (1311.0903)

$$BR_{SM}(B_s \to \mu^+ \mu^-) = (3.57 \pm 0.16) \times 10^{-9}$$

$B \to K^* (\to K\pi) \mu\mu$ angular distribution

Kruger, Matias (hep-ph/0502060)

$B \to K^* (\to K\pi) \mu \mu$ angular distribution

$$\frac{d^{(4)}\Gamma(B \to K^*(\to K\pi)\mu\mu)}{dq^2 d(\cos\theta_l)d(\cos\theta_k)d\phi} = \frac{9}{32\pi}$$

$$\times \left(I_1^s \sin^2 \theta_k + I_1^c \cos^2 \theta_k + (I_2^s \sin^2 \theta_k + I_2^c \cos^2 \theta_k) \cos 2\theta_l + I_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi + I_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + I_5 \sin 2\theta_k \sin \theta_l \cos \phi + (I_6^s \sin^2 \theta_k + I_6^c \cos^2 \theta_K) \cos \theta_l + I_7 \sin 2\theta_k \sin \theta_l \sin \phi + I_8 \sin 2\theta_k \sin 2\theta_l \sin \phi + I_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi \right).$$

$B \to K^* (\to K\pi) \mu\mu$ angular distribution

- ullet The I_i are functions of $\,q^2$ only
- $^{ullet}I_{6}\propto$ forward-backward (FB) asymmetry
- ullet @ ${
 m I}_6(q_0^2)=0\,,\,\,I_6\,$ is considered clean
- $I_5(q_0^2) \sim I_6(q_0^2) + \text{HQET suppressed} + 1\text{-term}$
- $P_5' \sim \frac{I_5}{\sqrt{-I_2^s I_2^c}}$ some debate in the community about its cleanness

P5'

Simone Bifani, seminar at CERN (overlaid predictions from SJ&Martin Camalich 2014)

Modest discrepancy around 4-6 GeV, consistent with reduced C9

Sebastian Jaeger - Workshop CERN 18/05/2017

Differential Branching Fractions Kick

> Results consistently lower than SM predictions

V_{cb} – inclusive or exclusive?

Inclusive (PDG)

$$|V_{cb}| = (42.2 \pm 0.8) \times 10^{-3}$$

Exclusive – two methods:

BGL (Boyd, Grinstein, Lebed)	CLN (Caprini, Lellouch, Neubert)	
BGS (1703.06124)	Belle (1702.01521)	
$ V_{cb} = (41.7^{+2.0}_{-2.1}) \times 10^{-3}$	$ V_{cb} = (38.2 \pm 1.5) \times 10^{-3}$	
GK (1703.08170)	BLPR (1703.05330)	
$ V_{cb} = (41.9^{+2.0}_{-1.9}) \times 10^{-3}$	$ V_{cb} = (38.5 \pm 1.1) \times 10^{-3}$	

• See also BLPR (1708.07134)

B mesons are PUZZLING

B mesons are PUZZLING

Two things to do with Belle two

DA, Aielet Efrati (WIS), Yuval Grossman (Cornell), Yossi Nir (WIS) JHEP 1706 (2017) 019, Arxiv: 1702.07356

Charge current (CC)

Charge current (CC)

Neutral current (NC)

Charge current (CC)

Neutral current (NC)

u is part of a doublet

if we have u we have u

New observables - $R(\Upsilon) \ \& \ R(\psi)$

 $^{\bullet}$ We suggest to look for lepton non universality of $\,\Upsilon$ and $\,\psi$ decays

$$R_{\tau/\ell}^{V} \equiv \frac{\Gamma(V \to \tau^{+}\tau^{-})}{\Gamma(V \to \ell^{+}\ell^{-})}, \quad (V = \Upsilon, \psi(2s); \ \ell = e, \mu)$$

- $\Upsilon = b\bar{b}$ bound state
- $\psi = c\bar{c}$ bound state

These observables are extremely clean!

_ 17	V(nS)	SM prediction	Exp. value $\pm \sigma_{\rm stat} \pm \sigma_{\rm syst}$
	$\Upsilon(1S)$	$0.9924 \pm \mathcal{O}(10^{-5})$	$1.005 \pm 0.013 \pm 0.022$
$R_{ au/\ell}^{v}:$	$\Upsilon(2S)$	$0.9940 \pm \mathcal{O}(10^{-5})$	$1.04 \pm 0.04 \pm 0.05$
1/1	$\Upsilon(3S)$	$0.9948 \pm \mathcal{O}(10^{-5})$	$1.05 \pm 0.08 \pm 0.05$
	$\psi(2S)$	$0.390 \pm \mathcal{O}(10^{-4})$	0.39 ± 0.05

One things to do with Belle two

- ullet Current error is $\,\sigma_{1S}^{{\scriptscriptstyle BaBar}} \sim 2\%$
- Running at $\Upsilon(3S)$ with $\mathcal{L}\sim 1/ab$ Belle II might reach $\sigma_{1S}\simeq 0.4\%$
- Cover most region of parameter space related to $R(D^{(*)})$
- $^{\bullet}$ LFU in Υ decays provide additional motivation to study $\Upsilon(3S)$ at Belle II
- ullet Test the SM and Probe NP even if $R(D^{(*)})$ disappears

Measuring CP violation in $R(D^{(*)})$ by using D^{**}

DA, Yuval Grossman (Cornell), Abner Soffer (TAU) Arxiv: 1805.????

Why is it interesting to have a phase?

• $R(D^{(*)})$ is puzzling!

• NP breaks LFU at O(1)! Why shouldn't it break CP at O(1)?

CP violation = NP. No CPV within the SM

Can we measure CP asymmetry directly?

The most naive observable

$$\mathcal{A}_{CP} \propto |A(B \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(\bar{B} \to D^{(*)} \tau \bar{\nu})|^2$$

- Checklist:
- → Two amplitudes
- * Weak phase
- → Strong phase

Can we measure CP asymmetry directly?

The most naive observable

$$\mathcal{A}_{CP} \propto |A(B \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(\bar{B} \to D^{(*)} \tau \bar{\nu})|^2$$

• Checklist:

- → Weak phase
- Strong phase

Can we measure CP asymmetry directly?

The most naive observable

$$\mathcal{A}_{CP} \propto |A(B \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(\bar{B} \to D^{(*)} \tau \bar{\nu})|^2$$

Checklist:

→ Two amplitudes

→ Weak phase

Strong phase

Can we measure CP asymmetry directly?

The most naive observable

$$\mathcal{A}_{CP} \propto |A(B \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(\bar{B} \to D^{(*)} \tau \bar{\nu})|^2$$

Checklist:

→ Two amplitudes

Weak phase

Strong phase

Can we measure CP asymmetry directly?

The most naive observable

$$\mathcal{A}_{CP} \propto |A(B \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(\bar{B} \to D^{(*)} \tau \bar{\nu})|^2$$

• Checklist:

- → Two amplitudes
- **Y**

- → Weak phase
- ×
- Strong phase

How can we get a strong phase?

You get strong phase from

INTERFERENCE

What do we get?

$$egin{aligned} R(D) & B_s
ightarrow \mu \mu & R(K) \ P_5' & R(D^*) & ^{\Lambda_b
ightarrow \Lambda \mu \mu} \ R(K^*) & _{B_s
ightarrow \phi \mu \mu} \ & _{B
ightarrow K^* \mu \mu} \ & _{B
ightarrow K \mu \mu} & R(J/\psi) \end{aligned}$$

$$R(D)$$
 no σ $B_s o \mu\mu$ $R(K)$ V_{cb} V_{cb} $R(K)$ $N_b o \Lambda_{\mu\mu}$ $R(K)$ $N_b o \Lambda_{\mu\mu}$ $N_b o \Lambda_b o \Lambda_{\mu\mu}$ $N_b o \Lambda_b o \Lambda_{\mu\mu}$ $N_b o N_b o N_b$

$$R(D)$$
 no σ $R(K)$ $R(K)$ $R(D)$ lepton non-universalities $R(D)$ $R(D)$ $R(D)$ $R(D)$ $R(D)$ $R(D)$

CPV with excited charm mesons

$$B
ightarrow K^* \mu \mu \qquad \qquad B
ightarrow K \mu \mu \qquad \qquad B
ightarrow K \mu \mu \qquad \qquad R (J/\psi)^{ish}$$

Thank you!

