Low Energy Measurements of the Weak Mixing Angle

Beyond the Standard Model with Weak Neutral Current Interactions at Q² << M_z²

Krishna Kumar

Stony Brook University

COFI Workshop on BSM Physics with Charged Leptons, Puerto Rico, May 23, 2018

Historical Perspective on Weak Neutral Currents Motivation for Modern Low Q² Measurements Review of Past Measurements Overview of Future Initiatives Brief Comments on Neutrino Scattering Conclusion and Outlook

Historical Perspective

Glashow, Weinberg and Salam: SU(2)_LXU(1)_Y Electroweak Interactions

$$\tan \theta_W = \frac{g'}{g} \qquad e = g \sin \theta_W$$

The Z boson incorporated

	Left-	Right-
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

$$A_{\mu} = B_{\mu}^{0} \cos \theta_{W} + W_{\mu}^{0} \sin \theta_{W}$$
$$Z_{\mu} = W_{\mu}^{0} \cos \theta_{W} - B_{\mu}^{0} \sin \theta_{W}.$$

One free parameter: weak mixing angle θ_W

Glashow, Weinberg and Salam: SU(2)_LXU(1)_Y Electroweak Interactions

$$\tan \theta_W = \frac{g'}{g} \qquad e = g \sin \theta_W$$

The Z boson incorporated

	$\begin{array}{c} \textbf{Left-}\\ g_L \end{array}$	Right- g_R
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

$$A_{\mu} = B_{\mu}^{0} \cos \theta_{W} + W_{\mu}^{0} \sin \theta_{W}$$
$$Z_{\mu} = W_{\mu}^{0} \cos \theta_{W} - B_{\mu}^{0} \sin \theta_{W}.$$

One free parameter: weak mixing angle θ_W

Charged Current

Glashow, Weinberg and Salam: SU(2)_L X U(1)_Y Electroweak Interactions

$$\tan \theta_W = \frac{g'}{g} \qquad e = g \sin \theta_W$$

The Z boson incorporated

	$\begin{array}{c} \textbf{Left-}\\ g_L \end{array}$	Right- g_R
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T-q\sin^2\theta_W$	$-q\sin^2\theta_W$

$$A_{\mu} = B_{\mu}^{0} \cos \theta_{W} + W_{\mu}^{0} \sin \theta_{W}$$
$$Z_{\mu} = W_{\mu}^{0} \cos \theta_{W} - B_{\mu}^{0} \sin \theta_{W}.$$

One free parameter: weak mixing angle θ_W

U Vu W^{*}

Charged Current

 v_{μ} Z^0

Neutral Current

Glashow, Weinberg and Salam: SU(2)_LXU(1)_Y Electroweak Interactions

$$\tan \theta_W = \frac{g'}{g} \qquad e = g \sin \theta_W$$

The Z boson incorporated

	$\begin{array}{c} \textbf{Left-}\\ g_L \end{array}$	Right- g_R
γ Charge	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$	$0,\pm 1,\pm \frac{1}{3},\pm \frac{2}{3}$
W Charge	$T = \pm \frac{1}{2}$	zero
Z Charge	$T - q\sin^2\theta_W$	$-q\sin^2\theta_W$

$$A_{\mu} = B_{\mu}^{0} \cos \theta_{W} + W_{\mu}^{0} \sin \theta_{W}$$
$$Z_{\mu} = W_{\mu}^{0} \cos \theta_{W} - B_{\mu}^{0} \sin \theta_{W}.$$

One free parameter: weak mixing angle θ_W

 v_{μ}

Charged Current

 Z^{0}

Higgs Mechanism + Renormalizability

$$\sin^2 \theta_W^0 = \left(\frac{e^0}{g^0}\right)^2 = 1 - \left(\frac{M_W^0}{M_Z^0}\right)^2$$

Low Energy Measurements of $\sin^2\theta_W$

Low energy WNC interactions $(Q^2 << M_Z^2)$

Historical Context:

Low energy WNC interactions $(Q^2 << M_Z^2)$

Historical Context:

- 1960s: An Electroweak Model of Leptons (and quarks)
 - SU(2)_L X U(1)_y theory predicted the Z boson, introduced $sin^2 \vartheta_W$

Low energy WNC interactions $(Q^2 << M_Z^2)$

Historical Context:

- 1960s: An Electroweak Model of Leptons (and quarks)
 - $SU(2)_L \times U(1)_y$ theory predicted the Z boson, introduced $sin^2 \vartheta_W$
- 1973: antineutrino-electron scattering
 - First weak neutral current observation
 - ·Gargamelle observes one ν_{μ} e^- event
 - •First measurement of weak mixing angle

Low energy WNC interactions $(Q^2 << M_T^2)$

Historical Context:

Yu

 Z^{\prime}

- 1960s: An Electroweak Model of Leptons (and quarks) •
 - SU(2)_L X U(1)_y theory predicted the Z boson, introduced $sin^2 \vartheta_W$
- 1973: antineutrino-electron scattering •
 - First weak neutral current observation
 - •Gargamelle observes one $v_u e^-$ event
 - ·First measurement of weak mixing angle

- Mid-70s: Does the Weak Neutral Current interfere with the • Electromagnetic Current?
 - Central to establishing $SU(2)_L \times U(1)_Y$

Low energy WNC interactions $(Q^2 << M_Z^2)$

Historical Context:

Yu

 Z^{\prime}

- 1960s: An Electroweak Model of Leptons (and quarks)
 - $SU(2)_L \times U(1)_y$ theory predicted the Z boson, introduced $sin^2 \vartheta_W$
- 1973: antineutrino-electron scattering
 - First weak neutral current observation
 - •Gargamelle observes one $v_{\mu} e^-$ event
 - •First measurement of weak mixing angle

- Mid-70s: Does the Weak Neutral Current interfere with the Electromagnetic Current?
 - Central to establishing $SU(2)_L \times U(1)_Y$

Consider fixed target electron scattering

Low energy WNC interactions $(Q^2 << M_Z^2)$

Historical Context:

Yu

 Z^{\prime}

- 1960s: An Electroweak Model of Leptons (and quarks)
 - $SU(2)_L \times U(1)_y$ theory predicted the Z boson, introduced $sin^2 \vartheta_W$
- 1973: antineutrino-electron scattering
 - First weak neutral current observation
 - ·Gargamelle observes one ν_{μ} e^- event
 - •First measurement of weak mixing angle

- Mid-70s: Does the Weak Neutral Current interfere with the Electromagnetic Current?
 - Central to establishing $SU(2)_L \times U(1)_Y$

Consider fixed target electron scattering

$$\binom{\nu}{e}_{l} \binom{E^{\circ}}{e}_{r}$$

Low Energy Measurements of $\sin^2\theta_W$

Low energy WNC interactions $(Q^2 << M_Z^2)$

Historical Context:

Yu

 Z^{\prime}

- 1960s: An Electroweak Model of Leptons (and quarks)
 - $SU(2)_L \times U(1)_y$ theory predicted the Z boson, introduced $sin^2 \vartheta_W$
- 1973: antineutrino-electron scattering
 - First weak neutral current observation
 - ·Gargamelle observes one ν_{μ} e^- event
 - •First measurement of weak mixing angle

- Mid-70s: Does the Weak Neutral Current interfere with the Electromagnetic Current?
 - Central to establishing $SU(2)_L \times U(1)_Y$

Consider fixed target electron scattering

 $\begin{pmatrix} \nu \\ e \end{pmatrix}_{i} \quad \begin{pmatrix} E^{\circ} \\ e \end{pmatrix}_{r}$ $(e)_r$ Parity is conserved Parity is violated

Low Energy Measurements of $\sin^2\theta_W$

The first Parity-Violating Electron Scattering (PVES) Experiment Anatomy of E122 at SLAC

The first Parity-Violating Electron Scattering (PVES) Experiment Anatomy of E122 at SLAC

The first Parity-Violating Electron Scattering (PVES) Experiment Anatomy of E122 at SLAC

Electroweak Theory at 1-Loop

For electroweak interactions, 3 input parameters needed:

- 1. Rb-87 mass + Ry constant
- 2. The muon lifetime
- 3. The Z line shape

 $\alpha_{QED} \ G_F \ M_Z$ Muon decay Z production

Low Energy Measurements of $\sin^2\theta_W$

Electroweak Theory at 1-Loop For electroweak interactions, 3 input parameters needed: 4th and 5th best measured parameters: 1. Rb-87 mass + Ry constant Mw and $sin^2\theta_W$

- 2. The muon lifetime
- 3. The Z line shape

 $\alpha_{QED} \ G_F \ M_Z$

Muon decay Z production

Weak Neutral Current interactions

Electroweak Theory at 1-Loop For electroweak interactions, 3 input parameters needed: 4th and 5th best measured parameters: 1. Rb-87 mass + Ry constant M_W and $sin^2\theta_W$ 2. The muon lifetime 3. The Z line shape $\alpha_{QED} \ G_F \ M_Z$ Muon decay Z production **Weak Neutral Current interactions** $\sin^2 \theta_W \equiv 1 - m_W^2 / m_Z^2$ simple definition; disfavored due to heavy mt

Consider $f_1\bar{f}_1 \rightarrow f_2\bar{f}_2$ or $f_1f_2 \rightarrow f_1f_2$ $L_{f_1f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij}\bar{f}_{1i}\gamma_\mu f_{1i}\bar{f}_{2j}\gamma^\mu f_{2j}$ $f_1 \rightarrow f_1f_2$

New heavy physics that does not couple directly to SM gauge bosons

Motivation for Low Q² Measurements

Physics down to a length scale of 10⁻¹⁹ m well understood but.....

Many questions still unanswered....

The High Energy Frontier: Collider Physics The Cosmic Frontier: Particle, Nuclear and Gravitational Astrophysics A comprehensive search for clues requires, in addition: The Intensity/Precision Frontier

Physics down to a length scale of 10⁻¹⁹ m well understood but..... **Modern Electroweak Physics** Many questions still unanswered.... **The High Energy Frontier: Collider Physics** The Cosmic Frontier: Particle, Nuclear and Gravitational Astrophysics A comprehensive search for clues requires, in addition: **The Intensity/Precision Frontier** Violation of Approximate (?) Symmetries ★ Neutrinoless Double-Beta Decay, EDMs, CLFV,... Direct Detection of Dark Matter Measurements of Neutrino Masses and Mixing Precise Measurements of SM observables Intense beams, ultra-high precision, exotic nuclei, table-top experiments, rare processes....

Low Energy Measurements of $\sin^2\theta_W$

Thumb Rule: Weak mixing angle must be measured to sub-1% precision WNC "Bookkeeping"

Atomic Parity Violation: Cs-133 future measurements and theory challenging **Neutrino Deep Inelastic Scattering: NuTeV** future measurements and theory challenging **PV Møller Scattering: E158 at SLAC** statistics limited, theory robust next generation: MOLLER (factor of 5 better) PV elastic e-p scattering: Qweak theory robust at low beam energy next generation: P2 (factor of 3 better) **PV Deep Inelastic Scattering: PVDIS** theory robust for ²H in valence quark region factor of 5 to 8 improvement possible: SOLID

Krishna Kumar, May 21, 2018

Low Energy Measurements of $\sin^2\theta_W$

Review of Charged Lepton Measurements

•6S \rightarrow 7S transition in ¹³³Cs is forbidden within QED •Parity Violation introduces small opposite parity admixtures •Induce an E1 Stark transition, measure E1-PV interference •5 sign reversals to isolate APV signal and suppress systematics •Signal is ~ 6 ppm, measured to ~ 20 ppb

•6S \rightarrow 7S transition in ¹³³Cs is forbidden within QED •Parity Violation introduces small opposite parity admixtures •Induce an E1 Stark transition, measure E1-PV interference •5 sign reversals to isolate APV signal and suppress systematics •Signal is ~ 6 ppm, measured to ~ 20 ppb

 $Im(E1_{PNC})/\beta = 1.5935(56) \text{ mV/cm}$

•6S \rightarrow 7S transition in ¹³³Cs is forbidden within QED •Parity Violation introduces small opposite parity admixtures •Induce an E1 Stark transition, measure E1-PV interference •5 sign reversals to isolate APV signal and suppress systematics •Signal is ~ 6 ppm, measured to ~ 20 ppb

 $Im(E1_{PNC})/\beta = 1.5935(56) \text{ mV/cm}$

$$Q_W = \left(\frac{E1_{PNC}/\beta}{M_{hf}/\beta}\right) \left(\frac{NM_{hf}}{k_{PNC}}\right)$$

4 decades of measurements: emergence as a precision tool **Parity-Violating Electron Scattering (PVES)** $-A_{LR} = A_{PV} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \sim \frac{A_{weak}}{A_{\gamma}} \sim \frac{G_F Q^2}{4 \pi \alpha} \left(g_A^e g_V^T + \beta g_V^e g_A^T \right)$ longitudinally polarized e^{-} Weak Charge Qw Krishna Kumar, May 23, 2018 Low Energy Measurements of $\sin^2\theta_W$

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

PV Electron-Electron Scattering

PV Electron-Electron Scattering

electron target:

 $\mathbf{Q}_{\mathbf{W}} = \mathbf{1} - 4\sin^2\theta_{\mathbf{W}}$ $\frac{\delta(Q_W)}{Q_W} \sim 10\% \Longrightarrow \frac{\delta(\sin^2 \theta_W)}{\sin^2 \theta_W} \sim 0.5\%$

Goal: error small enough to probe TeV scale physics E158 ~ 10 ppb statistical error at highest E_{beam} ~ 0.5% error on weak mixing angle primary & scattered collimator collimator detectors liquid ep's photons hydrogen polarized beam 0.7 m Mollers dipoles quadrupoles 60 m A large number of technical challenges ...

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

Tree-level prediction: ~ 250 ppb

E158 Implications

Tree-level prediction: ~ 250 ppb $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

E158 Implications *Phys. Rev. Lett.* 95 081601 (2005)

Low Energy Measurements of $\sin^2\theta_W$

Nature

E158 Implications *Phys. Rev. Lett.* 95 081601 (2005)

PARTICLE PHYSICS

Electrons are not ambidextrous

Andrzej Czarnecki and William J. Marciano

The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is the last hurrah for Stanford's powerful two-mile linear accelerator.

Limits on "New" Physics

95%

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Low Energy Measurements of $\sin^2\theta_W$

Nature

E158 Implications *Phys. Rev. Lett.* 95 081601 (2005)

PARTICLE PHYSICS

Electrons are not ambidextrous

Andrzej Czarnecki and William J. Marciano

The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is the last hurrah for Stanford's powerful two-mile linear accelerator.

Limits on "New" Physics

95%

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Nature

E158 Implications *Phys. Rev. Lett.* 95 081601 (2005)

PARTICLE PHYSICS

Electrons are not ambidextrous

Andrzej Czarnecki and William J. Marciano

The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is the last hurrah for Stanford's powerful two-mile linear accelerator.

Limits on "New" Physics

95%

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Low Energy Measurements of $\sin^2\theta_W$

Nature

E158 Implications *Phys. Rev. Lett.* 95 081601 (2005)

PARTICLE PHYSICS

Electrons are not ambidextrous

Andrzej Czarnecki and William J. Marciano

The best low-energy measurement yet obtained of the electroweak mixing angle — a central parameter of the standard model of particle physics — is the last hurrah for Stanford's powerful two-mile linear accelerator.

Limits on "New" Physics

95%

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Semi-leptonic WNC Interactions PVES on Hadron Targets

 $\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\overline{e}\gamma^{\mu}\gamma_5 e(C_{1u}\overline{u}\gamma_{\mu}u + C_{1d}\overline{d}\gamma_{\mu}d)$

 $+C_{ee}(e\gamma^{\mu}\gamma_{5}e\overline{e}\gamma_{\mu}e)$

 $+\overline{e}\gamma^{\mu}e(C_{2u}\overline{u}\gamma_{\mu}\gamma_{5}u+C_{2d}d\gamma_{\mu}\gamma_{5}d)]$

 $C_{1i} \equiv 2g_A^e g_V^i$ $C_{2i} \equiv 2g_V^e g_A^i$

Semi-leptonic WNC Interactions
PVES on Hadron Targets

$$\int_{Q} \frac{1}{Q} \int_{Q} \frac{1}{Q$$

21

Semi-leptonic WNC Interactions
PVES on Hadron Targets

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\bar{e}\gamma^{\mu}\gamma_5 e(C_{1u}\bar{u}\gamma_{\mu}u + C_{1d}\bar{d}\gamma_{\mu}d) + \bar{e}\gamma^{\mu}e(C_{2u}\bar{u}\gamma_{\mu}\gamma_5u + C_{2d}\bar{d}\gamma_{\mu}\gamma_5d)] + \bar{e}\gamma^{\mu}e(C_{2u}\bar{u}\gamma_{\mu}\gamma_5u + C_{2d}\bar{d}\gamma_{\mu}\gamma_5d)] + C_{ee}(e\gamma^{\mu}\gamma_5e\bar{e}\gamma_{\mu}e)$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2\theta_W \approx -0.19}{C_{2d} = \frac{1}{2} - \frac{2}{3} \sin^2\theta_W \approx -0.04} + \frac{f_1}{f_2} \int_2 \sum_{i,j=L,R} \frac{(g_{1j}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i}\gamma_{\mu}f_{1i}\bar{f}_{2j}\gamma_{\mu}f_{2j}} + \frac{f_1}{f_2} \int_2 \sum_{i,j=L,R} \frac{(g_{1ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i}\gamma_{\mu}f_{1i}\bar{f}_{2j}\gamma_{\mu}f_{2j}} + C_{2q} \propto (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \longrightarrow PV$$
 elastic e-N scattering,
 $C_{2q} \propto (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2 \longrightarrow PV$ deep inelastic scattering

PVDIS

A_{PV} in deep inelastic e-D scattering:

 $Q^2 >> 1 \ GeV^2$, $W^2 >> 4 \ GeV^2$

 $A_{PV} = \frac{G_F Q^2}{\sqrt{2\pi\alpha}} \begin{bmatrix} a(x) + f(y)b(x) \end{bmatrix} \qquad b(x): function of C_{2i}'s$ For ²H, assuming charge symmetry, ructure functions cancel in the ratio: $b(x) = \frac{3}{10} \begin{bmatrix} (2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \end{bmatrix} + \cdots$

For ²H, assuming charge symmetry, structure functions cancel in the ratio:

PVDIS

e e A_{PV} in deep inelastic e-D scattering:

For ²H, assuming charge symmetry,

structure functions cancel in the ratio:

 $Q^2 >> 1 \ GeV^2$, $W^2 >> 4 \ GeV^2$

a(x): function of C_{1i} 's $A_{PV} = \frac{G_F Q^2}{\sqrt{2\pi\alpha}} [a(x) + f(y)b(x)] \qquad b(x): function of C_{2i}'s$ $b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$

Wang et al., Nature 506, no. 7486, 67 (2014);

6 GeV run results

Q² ~ 1.1 GeV²

A ^{phys} (ppm) (stat.) (syst.)		$-91.10 \pm 3.11 \pm 2.97$		
(total)		± 4.30		
Q ² ~ 1.9 GeV ²		Asymmetry		
$A^{\rm phys}$ (ppm)		-160.80		
(stat.)		± 6.39		
(syst.)		± 3.12		
 (total)		± 7.12		

Low Energy Measurements of $\sin^2\theta_W$

DVDIC

PVDIS									
A _{PV} in deep inelastic e-D scattering:									
$\begin{array}{c} Q^{2} \gg 1 \ GeV^{2} \ , W^{2} \gg 4 \ GeV^{2} \\ A_{PV} = \frac{G_{F}Q^{2}}{\sqrt{2\pi\alpha}} \begin{bmatrix} a(x) + f(y)b(x) \end{bmatrix} \\ For^{2}H, assuming \ charge \ symmetry, \\ structure \ functions \ cancel \ in \ the \ ratio: \\ \end{array} \begin{array}{c} b(x) = \frac{3}{10} \begin{bmatrix} (2C_{2u} - C_{2d}) \frac{u_{v}(x) + d_{v}(x)}{u(x) + d(x)} \end{bmatrix} \end{array}$									
Wang et al., Nature 506, no. 7486, 67 (2014); 6 GeV run results Q ² ~ 1.1 GeV ²			!);	0.2	PVES/Qweak				
A ^{phy} (* (* (*	^{7s} (ppm) stat.) syst.) total)	$-91.10 \\ \pm 3.11 \\ \pm 2.97 \\ \pm 4.30$	JLab Resu	6 GeV It 201 -0.1 -0.2	Model				
A ^{phys} (ppr (stat.) (syst.) (total)	Q ² ~ 1.9 GeV ² n)	Asymr -160.80 ± 6.39 ± 3.12 ± 7.12	netry	-0.3 -0.4 -0.5 -0.9 -0.8	new best fit				
					2C _{1u} -C _{1d}				

Low Energy Measurements of $\sin^2\theta_W$

High-density concrete

shielding wall

Acceptance-defining

Pb collimator

 $I = 180 \ \mu A$

P = 88%

A_{PV} in elastic e-p scattering: Qweak at JLab The Weak Charge of the Proton e(p,s)Final result recently published: Nature 557 (2018) no.7704, 207-211 For a ¹H target, nucleon structure contribution well-constrained from measurements 7 **N** $A(Q^2 \to 0) = -\frac{G_F}{4\pi\alpha\sqrt{2}} \left[Q^2 Q_{weak}^p + Q^4 B(Q^2) \right] Q_{weak}^p = 2C_{1u} + C_{1d} \propto 1 - 4\sin^2 \vartheta_W$ P(k',s)P(k,s)Two Production Runs: Feb-May '11, Nov '11-May '12 lefferson Lab Endstation C 8-fold symmetry Production Mode: 180 μA, Integrating Toroidal Spectrometer 35 cm LH_a target e-beam E = 1.16 GeV $I = 180 \ \mu A$ Acceptance-defining P = 88% High-density concrete Pb collimator

shielding wall

Future Prospects

25

Johannes Gutenberg University (JGU), Mainz, Germany New MESA Accelerator

Low Energy Measurements of $\sin^2\theta_W$

P2 at MESA, JGU Mainz

Beam energy:	155 MeV
Beam current:	150 µA
Polarization:	(85±0.5)%
Target:	60 cm IH2
Acceptance:	2π·(35°±10°
Rate:	0.5 THz
Runtime:	10000 h
ΔA ^{app} :	0.1 ppb

My Guess! - New MESA hall: end of 2019 - Installation: 2020 - Commissioning: 2021

- Physics in 2021/22

Low Energy Measurements of $\sin^2\theta_W$

PVDIS at 12 GeV: SOLID

Requirements

- High Luminosity with E > 10 GeV
- Large scattering angles (for high x & y)
- Better than 1% errors for small bins
- x-range 0.25-0.75
- $W^2 > 4 \text{ GeV}^2$
- **Q**² range a factor of 2 for each x
 - (Except at very high x)
- Moderate running times

Strategy: sub-1% precision over broad kinematic range: sensitive Standard Model test and detailed study of hadronic structure contributions

Krishna Kumar, May 23, 2018

Low Energy Measurements of $\sin^2\theta_W$

95% C. L. Reach Comparison with e+e⁻ Collisions

Best reach on purely leptonic contact interaction amplitudes: LEP200

$$\mathcal{L}_{\mathrm{e}_{1}\mathrm{e}_{2}} = \sum_{\mathbf{i},\mathbf{j}=\mathbf{L},\mathbf{R}} rac{\mathbf{g}_{\mathbf{i}\mathbf{j}}^{2}}{2\Lambda^{2}} \mathbf{\overline{e}_{i}} \gamma_{\mu} \mathbf{e_{i}} \mathbf{\overline{e}_{j}} \gamma^{\mu} \mathbf{e_{j}}$$

$$g_{ij} = 4\pi\eta_{ij}$$

Model	η^f_{LL}	η^f_{RR}	η^f_{LR}	η_{RL}^{f}	LEP200 Reach $\Lambda_{ m LL}^{ m ee} \sim 8.3~{ m Te}$	\mathbf{V}
LL^{\pm}	± 1	0	0	0	E159 Dooch Alee 19 To	V
RR^{\pm}	0	± 1	0	0	$\Delta LL \sim 12 10$	V
VV^{\pm}	± 1	± 1	± 1	± 1	MOLLER Reach $\Lambda_{\rm LL}^{\rm ee} \sim 27~{ m Te}$	V

MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider or neutrino factory Unique Opportunity: Purely Leptonic Reaction at Q² << M_Z²

Electroweak Theory

EW Theory Prediction Uncertainty Well Below Projected Experimental Uncertainty

Czarnecki and Marciano (1995)

$$A_{PV}(ee) \propto \rho G_F \left[1 - 4\kappa(0)\sin^2\theta_W(m_Z)_{\overline{\text{MS}}}\right] + \cdots$$

Dominant Contribution at 1-loop

κ(0) known better than 1% of itself Erler and Ramsey-Musolf (2003)

Erler and Ferro-Hernandez (2018)

 $\delta(Q^e_W)$ (theory) = 0.6%, another factor of 2 improvement with full two-loop calculation

See talks by:

- A. Aleksejev
- A. Freitas
- R. Ferro Hernandez
- H. Patel
- M. Ramsey-Musolf

MOLLER $\delta(Q^{e_{W}})$ goal = ± 2.1 % (stat.) ± 1.1 % (syst.)

PREX. CREX and MOLLER at JLab

Krishna Kumar, April 30, 2018

MOLLER Apparatus

hybrid spectrometer coil

Technical Challenges

Evolutionary Improvements from Technology of Third Generation Experiments

- ~ 150 GHz scattered electron rate
- 1 nm control of beam centroid on target
- > 10 gm/cm² liquid hydrogen target
 - 1.5 m: ~ 5 kW @ 85 μA
- Full Azimuthal acceptance w/ θ_{lab} ~ 5 mrad
 - novel toroidal spectrometer pair
 - radiation hard, highly segmented integrating detectors
- Robust & Redundant 0.4% beam polarimetry

Expertise from several generations of successful parity experiments MOLLER Status

• MOLLER Collaboration

- 120 authors, 30 institutions, 5 countries
- Experience from SAMPLE, A4, HAPPEX, G0, PREX, Qweak, E158
- 4th generation PVES experiment at JLab
- Science Review: Sep 10, 2014
- by DOE Office of Nuclear Physics

Rigorous review by a panel of two nuclear theorists, two HEP theorists and two fundamental symmetries experimentalists

- Very positive outcome of Science Review
 - Highlighted unique opportunity: strong endorsement for the measurement
 - theoretical cleanliness (purely leptonic!)

- ~25M\$ DOE NP MIE
- goal: construction '19 '22

The US NSAC Long Range Plan highlighted MOLLER in the Fundamental Symmetries chapter. The Plan also calls for new investments in Major Items of Equipment (MIEs)

- JLab Director's Review in December 2016
 - CD-0 granted by DOE-NP on December 21, 2016!
 - Awaiting project start; DOE Office of Science budgets are under heavy stress

Latest indication is that an FY '19 start for the project is likely

Unique Opportunity: Purely Leptonic Reaction at $Q^2 \ll Mz^2$ **Deviations From Theory Prediction Interpretable as New Physics** Many different scenarios give rise to effective 4electron contact interaction amplitudes: significant

Doubly-

Scalar

Charged

e

Low Energy Measurements of $\sin^2\theta_W$

discovery potential

Krishna Kumar, May 23, 2018

5 σ for $h_{ee} \sim 1$ and $M_{\Delta} \sim 1$ TeV

V. Cirigliano et al, PRD 70 (2004) 075007

Unique Opportunity: Purely Leptonic Reaction at Q² << M_Z²

New Physics Examples

Deviations From Theory Prediction Interpretable as New Physics

Many different scenarios give rise to effective 4electron contact interaction amplitudes: significant discovery potential

V. Cirigliano et al, PRD 70 (2004) 075007

Constraining Lorentz Invariance

Ralf Lehnert, J. Phys.: Conf. Ser. 952 (2018) 012008

$$\begin{split} \delta A(t) &= \frac{G_F}{\sqrt{2}\pi\alpha} \, \frac{E_k \, y \, (1-y) \sin^2 \theta_W}{(y^2 - y + 1)^2} \, \vec{k}(t) \cdot \vec{\xi} \\ &= \frac{G_F}{\sqrt{2}\pi\alpha} \, \frac{E_k^2 \, y \, (1-y) \sin^2 \theta_W}{(y^2 - y + 1)^2} \times \\ &\left[\sqrt{\xi_X^2 + \xi_Y^2} \sqrt{1 - \cos^2 \alpha \sin^2 \chi} \, \cos \Omega_{\oplus} t + c_0 \right] \end{split}$$

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

Neutrino Scattering

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

Cloet, Bentz, Thomas, arXiv 0901.3559

⁴⁸Ca PVDIS with SoLID **Consider PVDIS on a heavy nucleus**

- Neutron or proton excess in nuclei leads to a isovector-vector mean field (p exchange)
- shifts quark distributions: "apparent" charge symmetry violation
- **Isovector EMC effect:** explain at least 2/3 of the NuTeV anomaly
- new insight into medium modification of quark distributions

Flavor separation of EMC effect extremely challenging!

 $a_2 \simeq \frac{9}{5} - 4\sin^2 \theta_W - \frac{12}{25} \frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} + \cdots$ Great leverage for a clean isospin decomposition decomposition

Low Energy Measurements of $\sin^2\theta_W$

Cloet, Bentz, Thomas, arXiv 0901.3559

48Ca PVDIS with SoLID Consider PVDIS on a heavy nucleus

- Neutron or proton excess in nuclei leads to a isovector-vector mean field (p exchange)
- shifts quark distributions: "apparent" charge symmetry violation
- **Isovector EMC effect: explain at least 2/3 of the NuTeV anomaly**
- new insight into medium modification of quark distributions

Flavor separation of EMC effect extremely challenging!

- With hadrons in the initial or final state, small effects are difficult to disentangle (theoretically and experimentally)
- Precise isotope cross-section ratios in purely electromagnetic electron scattering: MUCH reduced sensitivity to the isovector combination

 $a_2 \simeq \frac{9}{5} - 4\sin^2 \theta_W - \frac{12}{25} \frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} + \cdots$ Great leverage for a clean isospin decomposition decomposition

Potential of LBNF (if...)

+ Sensitivity expected from ν scattering in DUNE comparable to the Collider precision:

- FIRST single experiment to directly check the running of $\sin^2 \theta_W$: elastic ν -e scattering and νN DIS have different scales
- <u>Different scale</u> of momentum transfer with respect to LEP/SLD (off Z^0 pole)
- Direct measurement of neutrino couplings to Z^0 \implies Only other measurement LEP $\Gamma_{\nu\nu}$
- Independent cross-check of the NuTeV $\sin^2 \theta_W$ anomaly (~ 3σ in ν data) in a similar Q^2 range

Different independent channels:

•
$$\mathcal{R}^{\nu} = \frac{\sigma_{\mathrm{NC}}^{\nu}}{\sigma_{\mathrm{CC}}^{\nu}}$$
 in ν -N DIS (~0.35%)

•
$$\mathcal{R}_{\nu e} = \frac{\sigma_{\rm NC}^{\nu}}{\sigma_{\rm NC}^{\nu}}$$
 in ν -e⁻ NC elastic (~1%)

Deep synergy

with the LBL

oscillation program:

same requirements

and mutual feedback

- NC/CC ratio $(\nu p \rightarrow \nu p)/(\nu n \rightarrow \mu^- p)$ in (quasi)-elastic interactions
- NC/CC ratio $ho^0/
 ho^+$ in coherent processes
- \implies Combined EW fits like LEP
- Reduction of uncertainties to ~ 0.2% with 1-2 yr run in high energy mode

COHERENT Result

First light at the SNS with 14.6-kg CsI[Na] detector

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

Summary and Outlook

Measurements of the Weak Mixing Angle

- ★ Central to our understanding of the Standard Model
- **★** Remains relevant for BSM searches, especially flavor-diagonal
- Parity-Violating Electron Scattering in the next decade
 - ★ Technical progress has enabled unprecedented precision
 - ★ flagship experiments at electron accelerators
 - **★** Fundamental Nuclear/Nucleon Physics
 - Neutron RMS radii of heavy nuclei
 - valence quark structure of protons and neutrons

★ Fundamental Electroweak Physics and BSM Searches

- Search for new dynamics at the multi-TeV scale
- precision measurement of the weak mixing angle

Atomic Parity Violation and Neutrino Scattering

- ★ The low Q region might become important in the future!
- ★ Neutrino scattering should be investigated in any case...

41

Fundamental Symmetries & Neutrinos: The Intensity Frontier

Compelling arguments for "New Dynamics" in the Early Universe A comprehensive search to understand the origin of matter requires: The Large Hadron Collider, astrophysical observations as well as Lower Energy: $Q^2 << M_Z^2$

Nuclear/Atomic systems address several topics; unique & complementary

- Neutrino mass and mixing $0\nu\beta\beta$ decay, θ_{13} , β decay, long baseline neutrino expts...
- Rare or Forbidden Processes EDMs, charged LFV, 0vββ decay...
- Dark Matter Searches direct detection, dark photon searches...
- Precision Electroweak Measurements: (g-2)μ, charged & neutral current amplitudes

Experimental Facilities/Initiatives/Programs

- Neutrons: Lifetime, Asymmetries (LANSCE, NIST, SNS...)
- Underground Detectors: Dark Matter, Double-Beta Decay
- Nuclei: Precision Weak Decays, Atomic Parity Violation, EDMs (MSU, ANL, TAMU, Tabletop...)
- Muons, Kaons, Pions: Lifetime, Branching ratios, Michel parameters, g-2, EDMs (BNL, PSI, TRIUMF, FNAL, J-PARC...)
- Electron Beams: Weak neutral current couplings, precision weak mixing angle, dark photons (JLab, Mainz)

4-Electron Operator Reach

ELLER

 A_{PV} in Møller scattering is sensitive to the four-electron operators $[O_{ee}]_{1111}$ and $[O_{\ell\ell}]_{1111}$ $([O_{\ell e}]_{1111}$ cancels out in $\sigma_R - \sigma_L$). At the linear order in the EFT parameters and leading order in s/m_Z^2 , the effect of these operators and the vertex corrections can be effectively represented as a shift of the measured weak mixing angle:

MOLLER Context Summary

best contact interaction reach for leptons at low OR high energy: similar to LHC reach with semi-leptonic amplitudes

To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider

 $\delta(\sin^2 \theta_W) = \pm 0.00024 \, (stat.) \pm 0.00013 \, (syst.) \implies \sim 0.1\%$

Best projected uncertainty among projects being considered over next 10 years: worldwide and at any energy scale

If LHC sees ANY anomaly in Runs 2 or 3 (~2022)

★ The unique discovery space probed by MOLLER will become a pressing need, like other sensitive probes (e.g. g-2 anomaly)

Discovery scenarios beyond LHC signatures

- ★ Hidden weak scale scenarios
- ★ Lepton Number Violating Amplitudes
- ★ Light Dark Matter Mediators

Liquid Hydrogen Target

- Most thickness for least radiative losses
- No nuclear scattering background
- Small sensitivity to EM field induced polarization
- Need as much target thickness as technically feasible
 Tradeoff between statistics and systematics
 Default: Same geometry as E158

parameter	value
length	150 cm
thickness	10.7 gm/cm ²
Xo	17.5%
<i>р</i> , Т	35 psia, 20K
power	5000 W

Progressive evolution of sophistication over generations of PVES experiments; most recently, Qweak

Integrating Detector Concept

Krishna Kumar, Januar 11, 2016

Old and New Physics with Electron-Electron Scattering

Krishna Kumar, Januar 11, 2016

MOLLER Uncertainty Table

Beam	Assumed	Accuracy of	Required 2 kHz	Required cumulative	Systematic
Property	Sensitivity	Correction	random fluctuations	helicity-correlation	contribution
Intensity	1 ppb / ppb	$\sim \! 1\%$	< 1000 ppm	< 10 ppb	$\sim 0.1 \; \mathrm{ppb}$
Energy	-1.4 ppb / ppb	$\sim 10\%$	< 108 ppm	< 0.7 ppb	$\sim 0.05 \; \mathrm{ppb}$
Position	0.85 ppb / nm	$\sim 10\%$	$< 47 \ \mu { m m}$	< 1.2 nm	$\sim 0.05 \; \mathrm{ppb}$
Angle	8.5 ppb / nrad	$\sim 10\%$	$< 4.7 \ \mu \mathrm{rad}$	< 0.12 nrad	$\sim 0.05~{ m ppb}$

Error Source	Fractional Error (%)
Statistical	2.1
Absolute Normalization of the Kinematic Factor	0.5
Beam (second order)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$ All systematics	0.4
Beam (position, angle, energy) required at	0.4
Beam (intensity) sub-1% level	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \to (\pi, \mu, K) + X$	0.3
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Total systematic	1.1

57

Old and New Physics with Electron-Electron Scattering

EW Structure Functions at the EIC $e^{-} \rightarrow e^{-} H,^{2}H,^{3}He$

The core physics topics of the EIC have driven designs that reach a new regime of extraordinarily high polarized luminosity, state-of-theart collider detector technology and precision polarimetry

$$\begin{split} \frac{1}{2m_N}W^i_{\mu\nu} &= -\frac{g_{\mu\nu}}{m_N}\,F^i_1 + \frac{p_\mu p_\nu}{m_N(p\cdot q)}\,F^i_2 \stackrel{\text{Ji, Vogelsang, Blümlein, ...}}{\text{Anselmino, Efremov \& Leader}} \\ &+ i\frac{\epsilon_{\mu\nu\alpha\beta}}{2(p\cdot q)} \left[\frac{p^\alpha q^\beta}{m_N}\,F^i_3 + 2q^\alpha S^\beta\,g^i_1 - 4xp^\alpha S^\beta\,g^i_2 \right] \\ &- \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p\cdot q)}\,g^i_3 + \frac{S\cdot q}{(p\cdot q)^2}\,p_\mu p_\nu\,g^i_4 + \frac{S\cdot q}{p\cdot q}\,g_{\mu\nu}\,g^i_5 \end{split}$$

EW Structure Functions at the EIC $e^{-1H,^{2}H,^{3}He}$

58

The core physics topics of the EIC have driven designs that reach a new regime of extraordinarily high polarized luminosity, state-of-theart collider detector technology and precision polarimetry

$$\begin{split} \frac{1}{2m_N} W^i_{\mu\nu} &= -\frac{g_{\mu\nu}}{m_N} F^i_1 + \frac{p_\mu p_\nu}{m_N (p \cdot q)} F^i_2 \stackrel{\text{Ji, Vogelsang, Blümlein, ...}}{\text{Anselmino, Efremov \& Leader,}} \\ &+ i \frac{\epsilon_{\mu\nu\alpha\beta}}{2(p \cdot q)} \left[\frac{p^\alpha q^\beta}{m_N} F^i_3 + 2q^\alpha S^\beta g^i_1 - 4xp^\alpha S^\beta g^i_2 \right] \\ &- \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p \cdot q)} g^i_3 + \frac{S \cdot q}{(p \cdot q)^2} p_\mu p_\nu g^i_4 + \frac{S \cdot q}{p \cdot q} g_{\mu\nu} g^i_5 \end{split}$$

polarized electron, unpolarized hadron

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \Big[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \Big]$$

unpolarized electron, polarized hadron

$$A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \right]$$

 $\begin{array}{l} \textbf{proton} \\ F_1^{\gamma Z} \propto u + d + s \\ F_3^{\gamma Z} \propto 2u_v + d_v \\ g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s \\ g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v \end{array}$

 $egin{aligned} & extbf{deuteron} \ F_1^{\gamma Z} \propto u+d+2s \ F_3^{\gamma Z} \propto u_v+d_v \ g_1^{\gamma Z} \propto \Delta u+\Delta d+\Delta s \ g_5^{\gamma Z} \propto \Delta u_v+\Delta d_v \end{aligned}$

EW Structure Functions at the EIC $e^{-} \rightarrow e^{-} H,^{2}H,^{3}He^{-}$

The core physics topics of the EIC have driven designs that reach a new regime of extraordinarily high polarized luminosity, state-of-theart collider detector technology and precision polarimetry

$$\begin{split} \frac{1}{2m_N} W^i_{\mu\nu} &= -\frac{g_{\mu\nu}}{m_N} F_1^i + \frac{p_\mu p_\nu}{m_N (p \cdot q)} F_2^i \stackrel{\text{Ji, Vogelsang, Blümlein, ...}}{\text{Anselmino, Efremov \& Leader,}} \\ &+ i \frac{\epsilon_{\mu\nu\alpha\beta}}{2(p \cdot q)} \left[\frac{p^\alpha q^\beta}{m_N} F_3^i + 2q^\alpha S^\beta g_1^i - 4xp^\alpha S^\beta g_2^i \right] \\ &- \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p \cdot q)} g_3^i + \frac{S \cdot q}{(p \cdot q)^2} p_\mu p_\nu g_4^i + \frac{S \cdot q}{p \cdot q} g_{\mu\nu} g_5^i \end{split}$$

polarized electron, unpolarized hadron

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$$

unpolarized electron, polarized hadron

$$A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \Big[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \Big]$$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2\pi\alpha}} \left[a(x) + f(y)b(x) \right]$$

For ²H, assuming charge symmetry, structure functions cancel in the ratio:

$$a(x) = \frac{3}{10} \left[(2C_{1u} - C_{1d}) \right] + \dots \quad b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \dots$$

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

deuteron

 $F_1^{\gamma Z} \propto u + d + 2s$

 $F_3^{\gamma Z} \propto u_v + d_v$

 $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$

 $g_5^{\gamma Z} \propto \Delta u_v + \Delta d_v$

proton $F_1^{\gamma Z} \propto u + d + s$ $F_3^{\gamma Z} \propto 2u_v + d_v$ $g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s$ $g_5^{\gamma Z} \propto 2\Delta u_n + \Delta d_n$

EW Structure Functions at the EIC $e^{-1H,^{2}H,^{3}He}$

The core physics topics of the EIC have driven designs that reach a new regime of extraordinarily high polarized luminosity, state-of-theart collider detector technology and precision polarimetry

polarized electron, unpolarized hadron

$$A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \Big[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \Big]$$

unpolarized electron, polarized hadron

$$A_{TPV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \right]$$

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

Low Energy Measurements of $\sin^2\theta_W$

For ²H, assuming charge symmetry, structure functions cancel in the ratio: $2 \qquad 3 \qquad (x) + d(x)$

$$a(x) = \frac{3}{10} \left[(2C_{1u} - C_{1d}) \right] + \dots \quad b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \frac{3}{59} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right]$$

$$\begin{split} \frac{1}{2m_N} W^i_{\mu\nu} &= -\frac{g_{\mu\nu}}{m_N} F^i_1 + \frac{p_\mu p_\nu}{m_N (p \cdot q)} F^i_2 \stackrel{\text{Ji, Vogelsang, Blümlein, ...}}{\text{Anselmino, Efremov & Leader,}} \\ &+ i \frac{\epsilon_{\mu\nu\alpha\beta}}{2(p \cdot q)} \left[\frac{p^\alpha q^\beta}{m_N} F^i_3 + 2q^\alpha S^\beta g^i_1 - 4xp^\alpha S^\beta g^i_2 \right] \\ &- \frac{p_\mu S_\nu + S_\mu p_\nu}{2(p \cdot q)} g^i_3 + \frac{S \cdot q}{(p \cdot q)^2} p_\mu p_\nu g^i_4 + \frac{S \cdot q}{p \cdot q} g_{\mu\nu} g^i_5 \end{split}$$

 $\begin{array}{l} \textbf{proton} \\ F_1^{\gamma Z} \propto u + d + s \\ F_3^{\gamma Z} \propto 2u_v + d_v \\ g_1^{\gamma Z} \propto \Delta u + \Delta d + \Delta s \\ g_5^{\gamma Z} \propto 2\Delta u_v + \Delta d_v \end{array}$

Propose a dedicated deuteron run: this observable will average over the deuteron polarization

Krishna Kumar, May 23, 2018

Lepton Flavor Conservation Is it exact? No! Neutrino Oscillations!

- v's have mass! individual lepton flavors are not conserved
- Therefore Lepton Flavor Violation occurs in Charged Leptons too
Lepton Flavor Conservation Is it exact? No! Neutrino Oscillations!

- v's have mass! individual lepton flavors are not conserved
- Therefore Lepton Flavor Violation occurs in Charged Leptons too $\frac{\mu}{2}$

Lepton Flavor Conservation Is it exact? No! Neutrino Oscillations!

- v's have mass! individual lepton flavors are not conserved
- Therefore Lepton Flavor Violation occurs in Charged Leptons too ~~

tiny standard model branching fraction

Lepton Flavor Conservation Is it exact? No! Neutrino Oscillations!

- v's have mass! individual lepton flavors are not conserved
- Therefore Lepton Flavor Violation occurs in Charged Leptons too $~~\mu$

Slepton mixing in SUSY μ

$$BR(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{1i}}{M^2_W} \right|^2 < 10^{-54}$$

tiny standard model branching fraction

Low Energy Measurements of $\sin^2 \theta_W$

Krishna Kumar, May 21, 201

Even a decade from now, the EIC can compete in the first-to-third generation searches

е-т Conversion Search $e^- + p \rightarrow \tau^- + X$

nucl. frag.

If mixed in with hadron remnants, the tau would be boosted

- If forward in the incident electron direction, the tau would be isolated
- Potential for clean identification with high efficiency:

Topology: neutral current DIS event; except that the electron is replaced by tau lepton

pions

- look for single pion, three pions in a narrow cone, single muon: should be able to devise several good triggers
- tau vertex displaced 200 to 3000 microns: would greatly help background rejection and maintain high efficiency if vertex detector is included in EIC detector design

Dark Z to Invisible Particles Davoudiasi, Lee, Marciano

 $K \rightarrow \pi Z_d \rightarrow \pi +$ "missing energy" ε and δ effects could partially cancel!

Suppression by ~1/6 allows Z_d~100MeV Combined with muon g-2 -> observable dark PV Band

Dark Photons: Beyond kinetic mixing; introduce mass mixing with the Z⁰

 Potentially Observable Effects (for δ≥10⁻³) APV & Polarized Electron Scattering at low <Q> BR(K→πZ_d)≈ 4x10⁻⁴δ² BR(B→KZ_d)≈0.1δ²

<u>δ² roughly probed to10⁻⁶</u>

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

Spectrometer Engineering

3-D Layout of all 14 coils

Acceptance collimator

Vacuum Tank

Concept

Field Profile

Full Azimuthal Acceptance Warm copper coils

Water cooling

Optics are being fine-tuned

Detector plane distribution

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Moller and ep electrons (GHz/cm²)

- Reduce backgrounds
- Optimize asymmetry
- Symmetric forward/backward
- Collimator optimization
- Position sensitivity study
- Engineering work
 - Native CAD model
 - Water-cooling
 - Support structure
 - Force calculations

PVES Initiatives: Complementarity

$$[\mathbf{2C_{2u}} - \mathbf{C_{2d}}]$$

axial-quark couplings

SUSY Loops

GUT Z'

Leptophobic Z'

RPV SUSY

Leptoquarks

Lepton Number Violation **D** Q_W^e only

High for Q_w(Cs), Q_w^e(relative), smaller for others

axial-quark couplings (C₂'s) only

Different for all four in sign and magnitude

semi-leptonic only; different sensitivities

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

Generic Model Reach

 $X(Q^2) \equiv \alpha^{-1} (\sin^2 \theta_W(Q^2) - \sin^2 \theta_W(M_Z^2))$

 $Q_W^e = -0.0435[1 + 0.7 X(Q^2) + 7m_Z^2/m_{Z_\chi}^2]$ $Q_W^p = 0.0707[1 + 0.43 X(Q^2) + 4.3m_Z^2/m_{Z_\chi}^2]$ $Q_W(^{12}C) = -5.510[1 - 0.033 X(Q^2) - m_Z^2/m_{Z_\chi}^2]$ $Q_W(^{133}Cs) = -73.24[1 - 0.023 X(Q^2) - 0.9m_Z^2/m_{Z_\chi}^2]$

The projected equivalent uncertainties in competing axial-electron, vectorelectron/quark neutral current amplitudes remain challenging to reach.

Polarized Source at JLab

B. Matthew Poelker 2011 E. O. Lawrence Award

Record Performance (2012): 180 μA at 89% polarization

Electron Gun Requirements

- Ultrahigh vacuum
- No field emission
- Maintenance-free

24 Hours

Beam helicity is chosen pseudo-randomly at multiple of 60 Hz
sequence of "window multiplets" Example: at 240 Hz reversal

Choose 2 pairs pseudo-randomly, force complementary two pairs to follow Analyze each "macropulse" of 8

MOLLER will plan to use 1.96 kHz reversal; subtleties in details of timing (e.g. 64-plet) Noise characteristics have been unimportant in past JLab experiments: Not so for PREX, Qweak and MOLLER....

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

After corrections, variance of A_{pair} must get as close to counting statistics as possible: ~ 100 ppm (1kHz pairs); central value then reflects A_{phys}

Must minimize (both) random and helicity-correlated fluctuations in average window-pair response of electron beam trajectory, energy and spot-size.

The characteristics of the JLab beam, both at the 2 kHz time scale (~ppm, microns), to grand averages over several days (~ppb, nm), are critical to extracting a measurement which is dominated by statistical fluctuations.

MOLLER Backgrounds

The primary irreducible backgrounds are from electrons scattering elastically and inelastically off target protons

- photons and neutrons
- 2-bounce collimation system
- pions and muons
- real and virtual photo-production and DIS
- continuous parasitic measurement: guards against potential hyperon background

Krishna Kumar, May 23, 2018

Low Energy Measurements of $\sin^2\theta_W$

EW Physics and QCD Interplay

- Strange Quark Form Factors
- Inelastic backgrounds

electrons on LH₂

- ★ Inelastic e-p scattering in diffractive region ($Q^2 << 1 \text{ GeV}^2$, W² > 2 GeV²) pollutes the Møller peak
- Box diagram uncertainties
 - * Proton weak charge modified; inelastic intermediate states
- Parton dynamics in nucleons and nuclei Physics of SOLID
 - ★ Higher twist effects

Low Energy Measurements of $\sin^2\theta_W$

Krishna Kumar, May 23, 2018

(c)

MOLLER Auxiliary Measurements

♦ A_{PV} in Inelastic Electron Proton Scattering

- ★ The intermediate rings will directly constrain the weak neutral current proton coupling in diffractive kinematics
- ★ New input to improved constraints on the box diagram uncertainties for calculation of the proton weak charge
- ★ Interesting QCD dynamics: related to quark-hadron duality

Transverse Asymmetry Measurements

- ★ Dedicated Møller vector analyzing power measurements with transversely polarized beams: exquisite check of our understanding of the apparatus
- ★ Parasitic measurements of the vector analyzing power in elastic and inelastic electron-proton scattering in an entirely new kinematic regime
 - If the physics evolves such that heavier nuclei measurements become interesting: apparatus can be used for new measurements that would be feasible with just a few hours of beam!