

Precision Electroweak Constraints and New Physics

Jens Erler (IF-UNAM)

Searching for Physics Beyond the Standard Model Using Charged Leptons

COFI, Old San Juan, Puerto Rico May 21–25, 2018

Outline

- Key Observables and Inputs
- Gauge Couplings at Lower Energies
- Electroweak Fits
- Conclusions

Z pole

- M_Z = 91.1876 ± 0.0021 GeV (error no longer negligible)
- Γ_Z, σ_{had} and hadronic-to-leptonic BRs provide only α_s constraints not limited by theory
- forward-backward and
 left-right asymmetries
 - $\propto A_e \sim 1 4 \sin^2\theta_W(M_Z)$

have strong sensitivity to $\sin^2\theta_W = g'^2/(g^2 + g'^2)$ ALEPH, DELPHI, L3 & OPAL, Phys. Rept. 427 (2006)

$sin^2\theta_W$ measurements

M_W measurements

m_t measurements

	central	statistical	systematic	total
Tevatron	174.30	0.35	0.54	0.64
ATLAS	172.51	0.27	0.42	0.50
CMS	172.43	0.13	0.46	0.48
CMS Run 2	172.25	0.08	0.62	0.63
grand	172.74	0.11	0.31	0.33

JE, EPJC 75 (2015)

- $m_t = 172.74 \pm 0.25_{uncorr.} \pm 0.21_{corr.} \pm 0.32_{QCD} \text{ GeV} = 172.74 \pm 0.46 \text{ GeV}$
- somewhat larger shifts and smaller errors conceivable in the future Butenschoen et al., PRL 117 (2016); Andreassen & Schwartz, JHEP 10 (2017)
- 2.8 σ discrepancy between lepton + jet channels from DØ and CMS Run 2
- indirectly from EW fit: $m_t = 176.4 \pm 1.8 \text{ GeV}$ Freitas & JE (PDG 2018)

$$M_W - m_t$$

mc

- <u>α(Mz) and sin²θw(0)</u>: can use PQCD for heavy quark contribution if masses are known.
- g-2: c quark contribution to muon g-2 similar to γ×γ; ± 70 MeV uncertainty in m_c induces an error of ± 1.6 × 10⁻¹⁰ comparable to the projected errors for the FNAL and J-PARC experiments.
- Yukawa coupling mass relation (in single Higgs doublet SM): $\Delta m_b = \pm 9$ MeV and $\Delta m_c = \pm 8$ MeV to match precision from HiggsBRs @ FCC-ee
- QCD sum rule: m_c = 1272 ± 8 MeV Masjuan, Spiesberger & JE, EPJC 77 (2017) (expect about twice the error for m_b)

Features of our approach

- only experimental input: electronic widths of J/ ψ and ψ (2S)
- continuum contribution from self-consistency between sum rules
- include *M*₀ →
 stronger (milder) sensitivity
 to continuum (m_c)
- quark-hadron duality needed only in finite region (not locally)

• m
_c(m
_c) = 1272 ± 8 + 2616 [α_s(M_Z) – 0.1182] MeV
Masjuan, Spiesberger & JE, EPJC 77 (2017)

Features of our approach

- only experimental input: electronic widths of J/ ψ and ψ (2S)
- continuum contribution from self-consistency between sum rules
- include *M*₀ →
 stronger (milder) sensitivity
 to continuum (m_c)
- quark-hadron duality needed only in finite region (not locally)

• m
_c(m
_c) = 1272 ± 8 + 2616 [α_s(M_Z) – 0.1182] MeV
Masjuan, Spiesberger & JE, EPJC 77 (2017)

Gauge Couplings at Lower Energies

$$\alpha_s$$
 from T decays

$$\tau_{\tau} = \hbar \frac{1 - \mathcal{B}_{\tau}^s}{\Gamma_{\tau}^e + \Gamma_{\tau}^\mu + \Gamma_{\tau}^{ud}} = 290.75 \pm 0.36 \text{ fs},$$

 $\Gamma_{\tau}^{ud} = \frac{G_F^2 m_{\tau}^5 |V_{ud}|^2}{64\pi^3} S\left(m_{\tau}, M_Z\right) \left(1 + \frac{3}{5} \frac{m_{\tau}^2 - m_{\mu}^2}{M_W^2}\right) \times$

$$\left[1 + \frac{\alpha_s \left(m_{\tau}\right)}{\pi} + 5.202 \,\frac{\alpha_s^2}{\pi^2} + 26.37 \,\frac{\alpha_s^3}{\pi^3} + 127.1 \,\frac{\alpha_s^4}{\pi^4} + \frac{\widehat{\alpha}}{\pi} \left(\frac{85}{24} - \frac{\pi^2}{2}\right) + \delta_{\rm NP}\right]$$

- T_{τ} result includes leptonic branching ratios
- $\mathscr{B}_{\tau^{s}} = 0.0292 \pm 0.0004 \ (\Delta S = -1) \text{ pdg 2018}$
- S $(m_{\tau}, M_Z) = 1.01907 \pm 0.0003$ JE, Rev. Mex. Fis. 50 (2004)
- δ_{NP} = 0.003 ± 0.009 (within OPE & OPE breaking) based on (controversial)
 Boito et al., PRD 85 (2012) & PRD 91 (2015); Davier et al., EPJC 74 (2014);
 Pich & Rodríguez-Sánchez, PRD 94 (2016)

$$\alpha_s$$
 from T decays

$$\tau_{\tau} = \hbar \frac{1 - \mathcal{B}_{\tau}^s}{\Gamma_{\tau}^e + \Gamma_{\tau}^\mu + \Gamma_{\tau}^{ud}} = 290.75 \pm 0.36 \text{ fs},$$

 $\Gamma_{\tau}^{ud} = \frac{G_F^2 m_{\tau}^5 |V_{ud}|^2}{64\pi^3} S\left(m_{\tau}, M_Z\right) \left(1 + \frac{3}{5} \frac{m_{\tau}^2 - m_{\mu}^2}{M_W^2}\right) \times$

$$\left[1 + \frac{\alpha_s \left(m_{\tau}\right)}{\pi} + 5.202 \,\frac{\alpha_s^2}{\pi^2} + 26.37 \,\frac{\alpha_s^3}{\pi^3} + 127.1 \,\frac{\alpha_s^4}{\pi^4} + \frac{\widehat{\alpha}}{\pi} \left(\frac{85}{24} - \frac{\pi^2}{2}\right) + \delta_{\rm NP}\right]$$

- dominant uncertainty from PQCD truncation (FOPT vs. CIPT vs. geometric continuation)
- $\alpha_{S^{(4)}}(m_{\tau}) = 0.323^{+0.018}_{-0.014}$
- $\alpha_{S}^{(5)}(M_Z) = 0.1184^{+0.0020}_{-0.0018}$
- updated from Luo & JE, PLB 558 (2003) in Freitas & JE (PDG 2018)

$\alpha(M_Z)$

- Dispersive approach:
 - $\alpha^{-1}(M_Z) = 128.947 \pm 0.012$ Davier et al., EPJC 77 (2017)
 - $\alpha^{-1}(M_Z) = 128.958 \pm 0.016$ Jegerlehner, arXiv:1711.06089
 - $\alpha^{-1}(M_Z) = 128.946 \pm 0.015$ Keshavarzi et al., arXiv:1802.02995
- $\alpha^{-1}(M_Z) = 128.949 \pm 0.010$ Ferro-Hernández & JE, JHEP 03 (2018)
 - This value is converted from the \overline{MS} scheme and uses both e⁺e⁻ annihilation and T decay spectral functions *Davier et al., EPJC 77 (2017)*
 - T data corrected for γ-ρ mixing Jegerlehner & Szafron, EPJC 71 (2011)
 - PQCD for $\sqrt{s} > 2$ GeV (using $\overline{m}_c \& \overline{m}_b$) Ferro-Hernández & JE, in preparation

g_µ-2 hadronic effects

- $a_{\mu}^{had,LO} = (69.31 \pm 0.34) \times 10^{-9}$ Davier et al., EPJC 77 (2017)
- $a_{\mu}^{had,LO} = (68.81 \pm 0.41) \times 10^{-9}$ Jegerlehner, EPJ Web Conf. 166 (2018)
- $a_{\mu}^{had,LO} = (68.88 \pm 0.34) \times 10^{-9}$ (incl. τ data) Jegerlehner, EPJ Web Conf. 166 (2018)
- $a_{\mu}^{had,LO} = (69.33 \pm 0.25) \times 10^{-9}$ Keshavarzi et al., arXiv:1802.02995
- $a_{\mu}^{had,NLO} = (-1.01 \pm 0.01) \times 10^{-9}$ (anti-correlated with $a_{\mu}^{had,LO}$) Krause, PLB 390 (1997)
- $a_{\mu}^{had,NNLO} = (0.124 \pm 0.001) \times 10^{-9}$ Kurz et al., EPJ Web Conf. 118 (2016)
- $a_{\mu}^{had,LBLS}(\alpha^3) = (1.05 \pm 0.33) \times 10^{-9} (\overline{m}_c \text{ treatment!})$ Toledo-Sánchez & JE, PRL 97 (2006)
- $a_{\mu}^{had,LBLS}(\alpha^4) = (0.03 \pm 0.02) \times 10^{-9}$ Colangelo et al., PLB 735 (2014)
- a_{μ} (exp.) a_{μ} (SM) = (2.55 ± 0.77)×10⁻⁹ (3.3 σ) Freitas & JE, PDG 2018

$$\frac{\sin^2 \theta_{W}(0): \text{RGE}}{\sqrt[\gamma]{f}}$$

$$\frac{\tilde{f}}{\sqrt[\gamma]{f}} \sum_{i} \sum_{i} \sum_{i} \sum_{i} \sum_{j} \sum_{i} \sum_{i} \sum_{j} \sum_{i} \sum_{j}$$

• $v_f: Z$ vector coupling to fermion f

- $K_i: QCD$ factor known to $O(\alpha_S^4)$ Baikov et al., JHEP 07 (2012)
- σ : singlet piece at $O(\alpha_s^3)$ and $O(\alpha_s^4)$ Baikov et al., JHEP 07 (2012)
- Y_i: field type dependent constants Ramsey-Musolf & JE, PRD 72 (2005)

$sin^2\theta_W(0)$ and $\Delta\alpha(M_Z)$

$$\mu^2 \frac{d\hat{v}_f}{d\mu^2} = \frac{\hat{\alpha}Q_f}{24\pi} \left[\sum_i K_i \gamma_i \hat{v}_i Q_i + 12\sigma \left(\sum_q Q_q \right) \left(\sum_q \hat{v}_q \right) \right]$$

compare with

$$\mu^2 \frac{d\hat{\alpha}}{d\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[\frac{1}{24} \sum_i K_i \gamma_i Q_i^2 + \sigma \left(\sum_q Q_q \right)^2 \right]$$

coupled system of differential equations Ramsey-Musolf & JE, PRD 72 (2005)

$sin^2\theta_W(0)$: RGE solution

$$\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0})\frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})}\right] + \frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_{2}}{3}\ln\frac{\mu^{2}}{\mu_{0}^{2}} + \frac{3\lambda_{3}}{4}\ln\frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \tilde{\sigma}(\mu_{0}) - \tilde{\sigma}(\mu)\right]$$

• λ_i : rational numbers depending on active particle content of the EFT

- theory uncertainty from RGE running ~ 1.6×10⁻⁶ (negligible)
- theory error from b and c matching ~ 3×10^{-6} (again using $\overline{m}_c \& \overline{m}_b$)
- we recycle the on-shell result for $\alpha(2 \text{ GeV})$ Davier et al., EPJC 77 (2017) → scheme conversion introducing 4.8×10^{-6} uncertainty
- total uncertainty from PQCD ~ 6×10^{-6} in $\sin^2\theta_W(0) = \overline{S^2}$

$sin^2\theta_W(0)$: singlet separation

0.0 0.0 0.5 1.5 0.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.5 2.0 0.5 1.5 0.5

Ferro-Hernández & JE, JHEP 03 (2018) adapted from lattice g_µ-2 calculation RBC/UKQCD, PRL 116 (2016)

• use of result for $\alpha(2 \text{ GeV})$ needs singlet piece isolation $\Delta_{\text{disc}} \alpha(2 \text{ GeV})$

• then $\Delta_{\text{disc}} \overline{S^2} = (\overline{S^2} \pm 1/20) \Delta_{\text{disc}} \alpha(2 \text{ GeV}) = (-6 \pm 3) \times 10^{-6}$

• step function \Rightarrow singlet threshold mass $\overline{m}_s^{disc} \approx 350 \text{ MeV}$

$sin^2\theta_W(0)$: flavor separation

strange quark external current	ambiguous external current	
Φ	KΚ (non – Φ)	
K \overline{K} π [almost saturated by Φ(1680)]	ΚΚ̄2π, ΚΚ̄3π	
ηΦ	ΚΚη, ΚΚω	

- use of result for $\alpha(2 \text{ GeV})$ also needs isolation of strange contribution $\Delta_s \alpha$
- Ieft column assignment assumes OZI rule
- expect right column to originate mostly from strange current $(m_s > m_{u,d})$
- quantify expectation using averaged $\Delta_s(g_{\mu}-2)$ from lattices as Bayesian prior RBC/UKQCD, JHEP 04 (2016); HPQCD, PRD 89 (2014)
- $\Delta_{s}\alpha(1.8 \text{ GeV}) = (7.09 \pm 0.32) \times 10^{-4} \text{ (threshold mass } \overline{m}_{s} = 342 \text{ MeV} \approx \overline{m}_{s}^{\text{disc}}\text{)}$

$sin^2\theta_W(0)$: result

source	uncertainty in sin²θw (0)		
$\Delta \alpha^{(3)}$ (2 GeV)	1.2×10 ⁻⁵		
flavor separation	1.0×10 ⁻⁵		
isospin breaking	0.7×10 ⁻⁵		
singlet contribution	0.3×10 ⁻⁵		
PQCD	0.6×10-5		
Total	1.8×10 ⁻⁵		

Sin² $\theta_{W}(0) = 0.23861 \pm 0.00005_{Z-pole} \pm 0.00002_{theory} \pm 0.00001_{\alpha_s}$ Ferro-Hernández & JE, JHEP 03 (2018); Freitas & JE, PDG 2018

$sin^2\theta_W(\mu)$

25

Inputs

- 5 inputs needed to fix the bosonic sector of the SM:
 SU(3) × SU(2) × U(1) gauge couplings and 2 Higgs parameters
- fine structure constant: α e.g. from the Rydberg constant (leaves g_e-2 as derived quantity and extra SM test)
- Fermi constant: GF from PSI (muon lifetime)
- Z mass: M_Z from LEP
- Higgs mass: M_H from the LHC
- strong coupling constant: α_s(M_Z) is fit output

Standard global fit

MH	125.14 ± 0.15 GeV		
Mz	91.1884 ± 0.0020 GeV		
$\overline{m}_{b}(\overline{m}_{b})$	4.180 ± 0.021 GeV		
$\Delta \alpha_{had}^{(3)}$ (2 GeV)	$(59.0 \pm 0.5) \times 10^{-4}$		

$\overline{m}_{t}(\overline{m}_{t})$	163.28 ± 0.44 GeV	1.00	-0.13	-0.28
m̄c(m̄c)	1.275 ± 0.009 GeV	-0.13	1.00	0.45
$\alpha_{s}(M_{z})$	0.1187 ± 0.0016	-0.28	0.45	1.00

other correlations small

Freitas & JE, PDG 2018

$M_H - m_t$

indirect M_H : 90⁺¹⁷–16 GeV (1.9 σ low)

 $\frac{\text{indirect } m_t}{176.4 \pm 1.8 \text{ GeV}}$ (2.0 σ high)

Oblique physics beyond the SM

- STU describe corrections to gauge-boson self-energies
- T breaks custodial SO(4)
- a multiplet of heavy degenerate chiral fermions contributes $\Delta S = N_C / 3\pi \sum_i [t_{3L^i} - t_{3R^i}]^2$
- extra degenerate fermion family yields $\Delta S = 2/3\pi \approx 0.21$
- S and T (U) correspond to dimension 6 (8) operators

ρ_0 fit

- $\Delta \rho_0 = G_F \sum_i C_i / (8\sqrt{2\pi^2}) \Delta m_i^2$
 - where $\Delta m_i^2 \ge (m_1 m_2)^2$
 - despite appearance <u>there is</u> decoupling (see-saw type suppression of Δm_i²)
- $\rho_0 = 1.00039 \pm 0.00019 (2.0 \sigma)$
 - $(16 \text{ GeV})^2 \le \sum_i C_i / 3 \Delta m_i^2 \le (48 \text{ GeV})^2 @ 90\% \text{ CL}$
 - Y = 0 Higgs triplet VEVs v₃ strongly disfavored ($\rho_0 < I$)
 - consistent with |Y| = I Higgs triplets if $v_3 \sim 0.01 v_2$

S fit

- S parameter rules out QCD-like technicolor models
- S also constrains extra <u>degenerate</u> fermion families:
 - \Rightarrow N_F = 2.75 ± 0.14 (assuming T = U = 0)
 - compare with $N_v = 2.991 \pm 0.007$ from Γ_Z

Freitas & JE, PDG 2018

STU fit

$sin^2\theta_W(M_Z)$	0.23113 ± 0.00014		
$\alpha_{s}(M_{Z})$	0.1189 ± 0.0016		

S	0.02 ± 0.10	1.00	0.92	-0.66
Т	0.07 ± 0.12	0.92	I.00	-0.86
U	0.00 ± 0.09	-0.66	-0.86	1.00

- $M_{KK} \gtrsim 3.2 \text{ TeV}$ in warped extra dimension models
- $M_V \gtrsim 4 \text{ TeV}$ in minimal composite Higgs models Freitas & JE (PDG 2018)

Effective couplings

 $[2 g^{eu} - g^{ed}]_{AV}$

Effective couplings

Scale exclusions post Qweak

Scale exclusions pre-SoLID / P2

$sin^2\theta_W$ beyond the SM

- Z-Z' mixing: modification of Z vector coupling
- oblique parameters: STU (also need M_W and Γ_Z)
- new amplitudes: off- versus on-Z pole measurements (e.g. Z')
- dark Z: renormalization group evolution (running)

Conclusions

- The SM is 50 years old and in great health immortal?
- BSM desperados:
 - g_µ-2 (Tuesday)
 - M_W (surely only 2 σ ... but in a very special observable)
 - simplest possibility: $\rho_0 > 1$
 - B-sector anomalies (mañana en la mañana G)
- Precision in $\sin^2\theta_W$ (A_{FB}) & M_W and future $Q_W(e)$ & $Q_W(p)$ measurements challenge theory \rightarrow needs major global effort

