

LHC beam screens: cryogenic observations in instrumented cells

Benjamin Bradu, Krzysztof Brodzinski and Serge Claudet

TE-CRG

E-cloud meeting 25th August 2017

Contents

- Nomenclature
- Sensor validation
- Heat load observations in instrumented cells
 - Absolute heat load per fill
 - Normalized heat load per instrumented cells

Nomenclature

Sensor number: Helium Flow direction

Sensor validation

- Test without beam using electrical heater on 23rd July 2017
 - Change beam screen set-point along all the temperature range
 - Wait steady-state condition
 - Compute sensor standard deviations between each sensor located at same position
- Results: Standard Deviation < 0.1 K in the range [6 K; 25 K]
 - QBS error < 0.5 W absolute → QBS error normalized < 0.003 W/m/1e14 p+ (< 2% error)
 </p>

Methodology

- Take 3 fills in June/July 2017
 - > Fill #5821: Scrubbing 25 ns @ 450 GeV
 - Fill #5882: Physics 25 ns @ 6.5 TeV
 - Fill #5980: Physics 50 ns @ 6.5 TeV
- Compute the heat load per magnet and per aperture whenever it is possible
- Normalize the heat load per length and per total beam intensity
- Possible calculations
 - Cells 13R4 and 34R4
 - ✓ Each beam contribution for Q1,D2,D3 can be calculated.
 - ✓ D4 magnet is calculated with 2 beams together (common sensor)
 - Cell 13L5
 - ✓ Each beam contribution for D4 can be calculated
 - ✓ D2 beam 1 cannot be calculated (one dead sensor)
 - √ D3 beam 2 cannot be calculated (one dead sensor)
 - √ Q1 magnet is calculated with 2 beams together (common sensor)
 - Cell 31L2
 - Each beam contribution for D2,D3,D4 can be calculated
 - √ Q1 magnet is calculated with 2 beams together (common sensor)

QBS at a glance (25ns @ 450 GeV)

Fill #5821 @ 450 GeV (12th June 2017) 25ns_2820b_288bpi_scrub2017

→ Some asymmetries Beam1 / Beam 2

QBS at a glance (25ns @ 6.5 TeV)

Fill #5882 @ 6.5 TeV (28th June 2017) 25ns_2556b_2544_2215_2332_144bpi_20inj

- → Large dispersion of heat loads across magnets
- → Some asymmetries Beam1 / Beam 2

QBS at a glance (50 ns @ 6.5 TeV)

Fill #5980 @ 6.5 TeV (22nd July 2017) 50ns_1284b_1272_527_652_72bpi_20inj

- → Similar heat loads in all magnets
- → No asymmetry Beam1 / Beam 2

Normalized heat load in 12R4 @ 25 ns

1 anomaly:

- Q1 beam1 @ 450 GeV

Normalized heat load in 34R4 @ 25 ns

3 anomalies

- Q1 beam 2 @ 450 GeV
- D3 beam 1 @ 450 GeV + 6.5 TeV

Normalized heat load in 13L5 @ 25 ns

1 anomaly:

- Q1 @ 450 GeV

Normalized heat load in 31L2 @ 25 ns

7 anomalies

- Q1 @ 450 GeV
- D2 beam 1 @ 450 GeV + 6.5 TeV
- D3 beam 1 + 2 @ 450 GeV + 6.5 TeV

Statistics in the 3 cells in S45

No e-cloud effect on quadrupoles at 6.5 TeV

Average QBS Normalized (W/m/1e14 p+)				
	450 GeV 25 ns (fill #5821)	6.5 TeV 25ns (fill #5882)	6.5 TeV 50ns (fill #5980)	
Quadrupoles	0.17	0.06	0.05	
Dipoles	0.02	0.07	0.03	

Standard Deviation / Average (%)				
	450 GeV 25 ns (fill #5821)	6.5 TeV 25ns (fill #5882)	6.5 TeV 50ns (fill #5980)	
Quadrupoles	67%	26%	8%	
Dipoles	204%	101%	13%	

Huge dispersion on dipoles at 25 ns!

Conclusion

What have we observed?

- Sensors are good enough for BS heat load estimations per aperture
- There is homogeneity across all magnets/apertures at 50 ns
- Abnormal heat loads are observed in some magnets and apertures at 25 ns
- The asymmetry beam1 / beam2 is NOT due to a cryogenic hydraulic problem in the cooling pipes (otherwise we should see a significant heat load on the whole cooling circuit length)
- Replaced Dipole in S12 shows a much better behaviour than others
- In S45 (low load sector)
 - ✓ we identified 1/24 (4%) abnormal aperture @ 6.5 TeV
- In S12 (high load sector)
 - ✓ we identified 3/8 (37%) abnormal apertures @ 6.5 TeV

