Can an impedance be the source of the observed differences?

- P. Arpaia
- F. Giordano
- G. ladarola
- B. Salvant

Agenda

- Context
- Rough scalings
- Broadband impedance
- Narrow band impedance
 - Comparison for 25 ns and 50 ns fill (5979 and 5980)
 - Including more fills
- Conclusion

Power Loss dependencies

For a given Impedance the Power loss is computed as:

encies
$$\frac{0.8}{Q_{0.4}}$$
 over loss is $\frac{0.8}{Q_{0.4}}$ $\frac{0.2}{Q_{0.4}}$ $\frac{0.48}{Q_{0.4}}$ $\frac{0.50}{Q_{0.50}}$ $\frac{0.50}{Q_{$

Where it can be shown that [1]:

- $P_{loss} \sim M^2$ for narrow-band Impedance
- $P_{loss} \sim M$ for broad-band Impedance

M: Number of bunches Z: Impedance

 Λ^2 : Normalized Power Spectrum

 w_0 : LHC revolution frequency

 $I_b = N_b e f_0$: Beam current

 N_b : Protons per bunch

$$f_0 = \frac{w_0}{2\pi}$$

So if the heat load is caused by an impedance, given 2 fills with the same shape of Λ we expect [2]:

- $\frac{P_{loss1}}{P_{loss2}} \approx \frac{M_1^2}{M_2^2}$ for narrow-band Impedance
- $\frac{P_{loss1}}{P_{loss2}} \approx \frac{M_1^2}{M_2}$ for broad-band Impedance

[1]:H. Lee M. Furman and B. Zotter. "Energy Loss of Bunched Beams in RF Cavities". In: (1986)

[2]:F. Giordano. "Impact of filling scheme on beam induced RF heating in CERN LHC and HL-LHC", Appendix A

New 25ns and 50ns fills

Both Spectra are normalized to better observe that around the pair main lines the **shapes are the same**

We can say that for all the pair main lines we have:

$$shape(\Lambda_{25}) \approx shape(\Lambda_{50})$$

We expect that

- $\frac{P_{loss25}}{P_{loss50}} \approx \frac{M_{25}^2}{M_{50}^2} \approx 3.96$ for narrow-band Impedance
- $\frac{P_{loss25}}{P_{loss50}} \approx \frac{M_{25}^{-2}}{M_{50}} \approx 1.99$ for broad-band Impedance

Broad band Impedance

To benchmark the theory we have calculated the Ploss for the broad band case:

- $R_S = 1$ (doesn't count in the ratio)
- $Q_r = 0$

The ratio results to be:

$$\frac{P_{25}}{P_{50}} \approx 2.04$$

As expected.

Narrow Band case

The Power Loss formula can also be written as:

$$P_{loss} = I_b^2 \sum_{p=-\infty}^{+\infty} Re[Z(pw_0)] |\Lambda^*(pw_0)|^2$$

Where Λ^* is the **not normalized** spectrum. Here is more easy to observe that for a narrow band Impedance (1 term in the sum) we get:

$$\frac{P_{loss25}}{P_{loss50}} \approx \frac{|\Lambda_{25}^*|^2}{|\Lambda_{50}^*|^2} \approx 4$$

As expected.

Cryogenic measurements on sector 23 (TE-CRG and G. Iadarola)

norm: normalized to the number of bunches

The ratio between the heat loads of the 50ns and 25ns not normalized on M should be between 2 and 4 if it's caused by an Impedance.

Neither a narrow nor a broad-band Impedance can explain this ratio

 $\frac{P_{loss25}(norm)}{P_{loss50}(norm)}$

≈ 8

 $\frac{P_{loss25}(not\ norm)}{P_{loss50}(not\ norm)} \approx$

Factor 2 between the number of bunches

Resonator model Impedance: more general case of 1 mode

What we already know about this Impedance

If this impedance exists, it should have [3]:

- $10^3 < Q_r < 10^4$
- $700MHz < f_r < 780MHz$

With those information we can compute the Power Loss for each one of these Q_r as function of f_r in order to find an Impedance that matches the heat load given by the measurements.

[3] B.Salvant: Expected impedance of a PIM non-conformity

Normalizing each P_{loss} to the 50 ns case (lowest heating)

Far from factor 16.

Increasing Q_r [1/4]

Far from factor 16.

Increasing $Q_r[2/4]$

Far from factor 16.

Increasing $Q_r[3/4]$

Far from factor 16.

Increasing $Q_r[4/4]$

We are always far from factor 16.

It's very improbable that is an Impedance the source of the heat load.

To be more convinced ...

We can try to reproduce the the measurements plot with an Impedance.

But how can we choose R_s , Q_r and f_r ?

We have to calculate all the P_{loss} with all the possible Q_r and $f_r(R_s)$ disappear with the normalization).

Then we look at all the plots (one for each value of Q_r) where the P_{loss} is plotted as function of f_r and we check if there is a frequency where all the fill are matching the measurements.

Comparing with the cryogenic measurements

How is the P_{loss} normalized ?In the same way of the measurements!

Once we get the $P_{loss}(f_r)$, to compare it with the measurements we have done the following operation:

- 1)Normalize each P_{loss} to the number of bunches (M)
- 2)Normalize each P_{loss} to the 100 ns case (lowest heating)
- 3) Normalize all the result to the factor obtained from the measurements: so the closer we get to 1, the more we are matching the measurements

Because the impedance is not a function of the filling scheme, we have looked for the frequencies where the Power Losses computed for each filling scheme were closer to 1.

1)Normalize each P_{loss} to the number of bunches(M)

2)Normalize each P_{loss} to the 100 ns case (lowest heating)

f [MHz]

25/08/2017

0.00

f [MHz]

3)Normalize all the result to the factor obtained from the measurements

We look for a frequency where all the curves are closer to 1

Taking in account all the fills studied we get: [1/5]

 Q_r is increasing..

Taking in account all the fills studied we get: [2/5]

 Q_r is increasing..

Taking in account all the fills studied we get: [3/5]

 Q_r is increasing..

Taking in account all the fills studied we get: [4/5]

 Q_r is increasing..

Taking in account all the fills studied we get: [5/5]

 Q_r is increasing..

Is there any frequency that explain that heating?

Being pessimistic on the measurement accuracy, we have looked with an algorithm to the frequencies where all the P_{loss} were within $\mp 50\%$ from 1 and we found **no one.**

If we extend the range to $\mp 65\%$ we found a frequency : 764.03MHz. That frequency exist only for $Q_r=10^4$.

Given this frequency we can check if we match the cryogenic measurements.

25/08/2017 25

Measurements Comparison

 $-R_s$ needed : $9.4M\Omega$ $-f_r = 764.03MHz$ $-Q_r = 10^4$

Conclusions

- The ratio between the 25ns and the 50ns Ploss is too huge to be explained with an impedance.
- The only frequency that seems give us an impedance that get close to the measurements does not match all the measurements for all the fills.
- The Shunt Impedance needed for the only frequency found in order to match the heating is too huge to be reasonable.
- This Impedance should be the same for all the sectors → It is even more improbable that this impedance exist

Binomial Distribution formula

https://cernbox.cern.ch/index.php/s/6aGnq8rDMooBTDD