Structure and beta decay properties of medium-heavy nuclei from the relativistic nuclear field theory

Elena Litvinova

Western Michigan University

ISOLDE Workshop and Users Meeting 2017, December 4-6 2017
• **Motivation:** to build a consistent and predictive approach to describe the entire nuclear chart (ideally, an arbitrary strongly-correlated many-body system)

• **Challenges:** the nuclear hierarchy problem, complexity of NN-interaction

• **Approximate, but quite accurate non-perturbative solutions:** Relativistic Nuclear Field Theory (RNFT). Emerged as a synthesis of Landau-Migdal Fermi-liquid theory, Copenhagen-Milano NFT and Quantum Hadrodynamics; now put in the context of a systematic equation of motion (EOM) method (Coll: P. Schuck)

• **Technique:** Green function formalism, EOM, time blocking method

• **Applications:** single-particle states (states in odd nuclei), excitation spectra of even-even and odd-odd nuclear systems, beta decay, astrophysics (Coll: C. Robin, A. Afanasjev, P. Ring, T. Marketin, D. Vretenar, …)

• **Conclusions and perspectives**
- **Nuclear scales: Hierarchy problem**

\[H = K + V \]

center of mass
internal DOF’s:
next energy scale

- No connection between the scales in the traditional NS models
- Effective theories (most often) lose the energy dependence of the “interaction”
The first direct detection of gravitational waves and gamma-ray bursts from the same source of merging neutron stars (kilonova)

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. Lett. 119, 161101

NSF/LIGO/Sonoma State University/A. Simonnet

Astrophysical origins of chemical elements:

The major part of the r-process path: neutron-rich medium-heavy nuclei
A strongly-correlated many-nucleon system: interaction, single-fermion propagator and related observables

Quantum Hadrodynamics (QHD):

\[H = \sum_{12} t_{12} \psi_{1}^\dagger \psi_{2} + \frac{1}{4} \sum_{1234} \bar{v}_{1234} \psi_{1}^\dagger \psi_{2}^\dagger \psi_{4} \psi_{3} \]

\[G_{11'}(t - t') = -i \langle T \psi(1) \psi^\dagger(1') \rangle \]

\[G(\xi, \xi'; \varepsilon) = \sum_{n} \frac{(\Psi(\xi))_{0n}(\Psi^\dagger(\xi'))_{n0}}{\varepsilon - (E_{n}^{(N+1)} - E_{0}^{(N)}) + i\delta} + \sum_{m} \frac{(\Psi^\dagger(\xi'))_{0m}(\Psi(\xi))_{m0}}{\varepsilon + (E_{m}^{(N-1)} - E_{0}^{(N)}) - i\delta}, \]

\[(\Psi^\dagger(\xi))_{n0} = \langle \Phi_{n}^{(N+1)} | \Psi^\dagger(\xi) | \Phi_{0}^{(N)} \rangle, \]

\[(\Psi(\xi))_{n0} = \langle \Phi_{n}^{(N-1)} | \Psi(\xi) | \Phi_{0}^{(N)} \rangle, \]

\[\chi_{EFT} \]

Hamiltonian

Single-particle propagator

Fourier transform:

Spectral expansion (Lehmann)

Observables:

Residues - spectroscopic (occupation) factors (basis-dependent)

Poles - single-particle energies
Exact equations of motion (EOM) for binary instantaneous interactions:

One-body problem

Instantaneous term (Hartree-Fock incl. “tadpole”)

\[
\Sigma_{11'}^{(0)} = -\delta(t - t') \langle [[[\psi_1, V], \psi_1^\dagger]] \rangle = -\sum_{j} \overline{v}_{1j} \rho_{jj'} = \]

Mean field, where \(\rho_{ij} = -i \lim_{t\to t'} G_{ij}(t-t') \) is the full solution of (1): includes the dynamical term!

Dynamical self-energy

\[
\Sigma_{11'}^{(r)}(t - t') = -i\langle T[\psi_1, V](t)[V, \psi_1^\dagger](t')\rangle^{irr}
\]

\[
= -\frac{1}{4} \sum_{234} \sum_{2'3'4'} \overline{v}_{1234} G^{irr}(432', 23'4')\overline{v}_{4'3'2'1'}
\]

EOM method:

P. Schuck and M. Tohyama, PRB 93, 165117 (2016). etc.
Exact mapping to the particle-vibration coupling

- **Model-independent mapping to the QVC-TBA:**
 \[
 \sum_{343'4'} \tilde{V}^*_{12,34} R_{34,3'4'}(\omega) \tilde{V}_{3'4'1'2'} = \sum_m g_{12}^m D_m(\omega) g_1^m
 \]

 \[R_{12,1'2'}(\omega) = \sum_m \left(\frac{\rho_{12}^m \rho_{1'2'}^m}{\omega - \Omega_m + i\delta} - \frac{\rho_{21}^m \rho_{2'1'}^m}{\omega + \Omega_m - i\delta} \right)\]

- **“phonon” vertex:**
 \[g_{12}^m = \sum_{34} \tilde{V}_{12,34} \rho_{34}^m\]

- **“phonon” propagator:**
 \[D_m(\omega) = \frac{1}{\omega - \Omega_m + i\delta} - \frac{1}{\omega + \Omega_m - i\delta}\]

Graphical Diagrams:

- **ph correlator:** coupling to normal phonons
- **pp correlator:** coupling to pairing phonons

Equations:

- **Dropping the uncorrelated term:** “factor 1/2” problem (Ring & Schuck, Book)
 “sign problem” (Danielewicz & Schuck, NPA 567 (1994) 78)

But: The lowest order is not the leading order in the strong coupling regime!
=> the uncorrelated term can be safely neglected
Fragmentation of single-particle states and particle-hole excitations

Single-particle structure

Energy

No correlations (instantaneous interaction only)

Correlations (QVC)

Dominant level

Strong fragmentation

Response

No correlations (instantaneous interaction only)

Correlations (QVC)

Spectroscopic factors $S_k^{(\nu)}$

$$E_k = \sum_k E_k^{(\nu)} S_k^{(\nu)}$$

$$\sum_\nu S_k^{(\nu)} = 1$$
(Quasi)particle-vibration coupling (QVC, PVC): Pairing correlations of the superfluid type + coupling to phonons

Dominant states and spectroscopic factors in 120Sn:

<table>
<thead>
<tr>
<th>(nlj) ν</th>
<th>S^th</th>
<th>S^exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2$d_{5/2}$</td>
<td>0.32</td>
<td>0.43</td>
</tr>
<tr>
<td>1$g_{7/2}$</td>
<td>0.40</td>
<td>0.60</td>
</tr>
<tr>
<td>2$d_{3/2}$</td>
<td>0.53</td>
<td>0.45</td>
</tr>
<tr>
<td>3$s_{1/2}$</td>
<td>0.43</td>
<td>0.32</td>
</tr>
<tr>
<td>1$h_{11/2}$</td>
<td>0.58</td>
<td>0.49</td>
</tr>
<tr>
<td>2$f_{7/2}$</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td>3$p_{3/2}$</td>
<td>0.58</td>
<td>0.54</td>
</tr>
</tbody>
</table>

E.L., PRC 85, 021303(R) (2012)

Spin-orbit splittings in 36S vs a bubble nucleus 34Si; neutron states:

Exp: Burgunder et al., PRL 112, 042502 (2014)
Th: K. Karakatsanis et al., PRC 95, 034901 (2017)
Single-particle states in 100Sn: pion dynamics included

Truncation scheme: phonons below 20 MeV
Phonon basis: $\Delta T=0$ phonons: 2+, 3-, 4+, 5-, 6+
$\Delta T=1$ phonons: 0, ±1±, 2±, 3±, 4±, 5±, 6±

Backward-going terms neglected for isospin-flip phonons

Exact equations of motion for binary interactions: two-body problem

\[R_{12,1',2'}^{(ph)}(t-t') = -i \langle T(\psi_1^\dagger \psi_2)(t)(\psi_2^\dagger \psi_1')(t') \rangle \]

\[R(\omega) = R^{(0)}(\omega) + R^{(0)}(\omega)W(\omega)R(\omega) \]

\[R(12',21') = \tilde{R}(12',21') - G(1,1')G(2',2) \]

\[W(t-t') = W^{(0)}(t-t') + W^{(r)}(t-t') \]

\[W = F^{irr} \]

Instantaneous term (“bosonic” mean field):

\[\rho_{\alpha\beta,\alpha'\beta'} = \langle \psi_{\alpha'}^{\dagger} \psi_{\beta'}^{\dagger} \psi_{\beta} \psi_{\alpha} \rangle \]

\[\begin{align*}
F^{(0)}(t-t') &= -\frac{i}{2} \langle \psi_{1'}^{\dagger} \psi_2 \psi_1^\dagger \psi_2' \rangle \\
&+ \frac{i}{2} \langle \psi_{1'}^{\dagger} \psi_2 \psi_1^\dagger \psi_2' \rangle \\
&+ \frac{i}{2} \langle \psi_{1'}^{\dagger} \psi_2 \psi_1^\dagger \psi_2' \rangle
\end{align*} \]

T-dependent (retarded & advanced) term

\[F_{12,1';2'}^{(r)}(t-t') = F_{12,1';2'}^{(r;11)}(t-t') + F_{12,1';2'}^{(r;12)}(t-t') + F_{12,1';2'}^{(r;21)}(t-t') + F_{12,1';2'}^{(r;22)}(t-t') \]

In the absence of 3-body and 4-body forces, \(G^{(4)} \) (approximately) factorizes into \(R^{(ph)} \), \(R^{(hp)} \), \(R^{(pp)} \), and \(R^{(hh)} \) (see below). This leads to:

\[\hat{R}(\omega) = \hat{R}^{(0)}(\omega) + \hat{R}^{(0)}(\omega)W[\hat{R}(\omega)]\hat{R}(\omega) \]

with

\[\hat{R} = \{ \hat{R}^{(ph)}, \hat{R}^{(hp)}, \hat{R}^{(pp)}, \hat{R}^{(hh)} \} \]
Nuclear response with QVC in time blocking approximation. Higher orders: toward a complete theory

Bethe-Salpeter Equation:

\[R(\omega) = A(\omega) + A(\omega) [V + W(\omega)] R(\omega) \]

Time blocking approximation (TBA):
V.I. Tselyaev, Yad. Fiz. 50, 1252 (1989)

Generalized TBA for correlated propagator:
2-phonon: V. Tselyaev, PRC 75, 024306 (2007)
Excitation modes in medium-mass and heavy nuclei within Relativistic Quasiparticle Time-Blocking Approximation (RQTBA)

Giant dipole resonance (GDR) in stable nuclei:

- \(^{120}\text{Sn}\), \(^{116}\text{Sn}\), \(^{90}\text{Zr}\), \(^{88}\text{Sr}\)

Pygmy dipole resonances

- \(^{208}\text{Pb}\)

GDR in neutron-rich \(\text{Sn}\):

- \(^{132}\text{Sn}\), \(^{130}\text{Sn}\)

Gamow-Teller (with IV spin-monopole) resonance:

- \(E.L., B.A.\ Brown, D.-L.\ Fang, T.\ Marketin, R.G.T.\ Zegers, PLB 730, 307 (2014)\)

Spin-Dipole resonance:

Gamow-Teller resonance in open-shell nuclei: spectra of odd-odd nuclei. Superfluid pairing and phonon coupling (pn-RQTBA)

Overall strength

\[S_{GT}(E^*) \text{ (MeV)}^{-1} \]

Low-energy part

\[S_{GT}(E^*) \text{ (MeV)}^{-1} \]

Beta decay half-lives

\[T_{1/2} \text{ (s)} \]

No artificial proton-neutron pairing

Gamow-Teller resonance in open-shell nuclei: superfluid pairing and phonon coupling (pn-RQTBA)

Neutron-rich Sn isotopes

Beta decay half-lives

GTR calculated in pn-RQTBA gives reasonable predictions on the strength distributions and beta decay half-lives in neutron-rich nuclei.

In β^+ branch the importance of ground state correlations associated with particle-vibration coupling is revealed: work in progress.

C. Robin and E. Litvinova, arXiv:1709.0360
Exotic spin-isospin excitations vs RNFT calculations

Recent measurements at MSU

100Mo (t, 3He)100Nb

28Si (10Be, 10B)28Al

Isovector monopole

Isovector dipole

Isovector spin monopole resonance

K. Miki, R.G.T. Zegers,...
E.L., ... , C. Robin et al.,

M. Scott, R.G.T. Zegers,...
E.L., ... , C. Robin et al.,
The lowest 1+ solutions in the addition channel become unstable indicating the onset of the triplet deuteron condensate. The particle-vibration coupling provides an overall attractive interaction and, thus, reinforces the condensate formation.

In the odd-odd $N=Z$ nuclei around closed shells the lowest 0+ and 1+ states are accurately described.

The pairing interaction in the proton-neutron channel is a delicate interplay of the ρ-meson and π exchanges, and the exchange by core vibrations.

Response in proton-neutron particle-particle (deuteron transfer) channel: quest for deuteron condensate and pn-pairing

Response in proton-neutron particle-particle (deuteron transfer) channel: quest for deuteron condensate and pn-pairing

\[J^\pi = 0^+ \quad J^{\pi} = 1^+ \]

- The pairing interaction in the proton-neutron channel is a delicate interplay of the p-meson and π exchanges, and the exchange by core vibrations.

- In the odd-odd $N=Z$ nuclei around closed shells the lowest 0^+ and 1^+ states are accurately described.

- The lowest 1^+ solutions in the addition channel become unstable indicating the onset of the triplet deuteron condensate.

- The particle-vibration coupling provides an overall attractive interaction and, thus, reinforces the condensate formation.

Summary:

- Relativistic NFT offers a powerful framework for a high-precision solution of the nuclear many-body problem.

- The self-consistent Green function formalism and the non-perturbative response theory based on QHD and including high-order correlations are available for a large class of nuclear excited states in even-odd, even-even and odd-odd nuclei.

- RNFT allows for a wide range of applications to nuclear structure, astrophysics and nuclear data.

Current and future developments:

- Dynamical like-particle and proton-neutron pairing; higher-order and complex ground-state correlations; finite temperature.

- Covariant response theory for deformed nuclear systems.

- Toward a completely “ab initio” description: realization of the approach based on the bare relativistic meson-exchange potential.

- Applications of RNFT to double beta-decay, neutron stars and EOS.
Many thanks for collaboration and support:

Peter Ring (Technische Universität München)
Peter Schuck (IPN Orsay)
Anatoli Afanasjev (MSU)
Victor Tselyaev (St. Petersburg State University)
Tomislav Marketin (U Zagreb)
Dario Vretenar (U Zagreb)
Remco Zegers (NSCL)
And others…

Nuclear Theory Group @ Western Michigan University:

Dr. Caroline Robin (now at INT, Seattle)
Herlik Wibowo
Irina Egorova