HELIOS: New Results and Future Developments

Benjamin P. Kay, Physics Division, Argonne National Laboratory ISOLDE Workshop and Users Meeting, December 2017

The University of Work

HELIOS: a new approach to studying transfer reactions in inverse kinematics* (and potential for the use of a HELIOS-like spectrometer at HIE-ISOLDE)

Benjamin P. Kay The University of York

ISOLDE Workshop and Users meeting 8-10 December 2010

Overview

Inverse kinematics, HELIOS

- Direct reactions with RI beams
- HELIOS at the ATLAS facility

Recent highlights

- Inelastic scattering, Isomer beams

Upgrades, ISS and SOLARIS

- Better hardware: HELIOS's new siblings

Transfer reactions

- An essential probe of nuclear structure
- Energies, angular momentum, overlaps
- (High-resolution detectors developed accordingly)
- Direct reactions, well understood models
- Highly selective
- (Over 50-60 years experience)
- Count rates Beams, nA- $\mu \mathrm{A}$

- \sim pre-90s, technique limited to stable systems
- Few doubly-magic systems studied
- Limited to changes of ~ 12 neutrons/protons excess
- Poor overlap with nuclei involved in astrophysical processes

Direct reactions with RI beams

$10 \mathrm{MeV} / \mathrm{u}(5-20 \mathrm{MeV} / \mathrm{u}),>10^{4} \mathrm{pps}$

- single-particles states, $E_{(e x, \text { spe }), ~} I$-values, spectroscopic factors, e.g., (d,p), ...
- pair correlations, e.g., (p,t), (t,p), (3 $\mathrm{He}, \mathrm{p}), \ldots$
- Collective properties via, e.g, (p, p'), $\left(d, d^{\prime}\right),\left(\alpha, \alpha^{\prime}\right), \ldots$

Kinematics: normal vs inverse

Inverse-kinematics challenges:

- Particle identification, $\Delta \mathrm{E}-\mathrm{E}$ techniques more challenging at low energies
- Strong energy dependence with respect to laboratory angle
- Kinematic compression at forward c.m. angles (in fact nearly all angles)
- Typically leading to poor resolution (100s of keV)
- ... and beams a few to 10^{6} orders of magnitude weaker (than stable beams)

Transport through a solenoidal field

$$
E_{\mathrm{cm}}=E_{\mathrm{lab}}+\frac{m}{2} V_{\mathrm{cm}}^{2}-\frac{m V_{\mathrm{cm}} z}{T_{\mathrm{cyc}}}
$$

And the cyclotron period gives provides particle ID.

HELIOS (it works)

ATLAS, home to HELIOS

ATLAS (today and near future)

- Stable beams at high intensity and energies up to $\sim 20 \mathrm{MeV} / \mathrm{u}$
- In-flight beams approx. $10<\mathrm{A}<30$ at energies up to $\sim 20 \mathrm{MeV} / \mathrm{u}$
- CARIBU beams at low intensity and energies up to $\sim 15 \mathrm{MeV} / \mathrm{u}$
- Low energy beams for trap measurements
- State-of-the-art instruments

ATLAS, e.g. beams (2015)

54 unique beams 37\% resulting in a RIB on target

Snapshot

A highly versatile instrument

- Major research programs from UConn, LANL, LSU, etc. Others include Berkeley, Lowell, CMU, Manchester, ...
- Apollo, gas target, ion chamber, backwards / forwards / all routine
- Use of tritium target

Recent highlights

Goal: Improve long standing uncertainties in the a-decay branch of the second ($\mathrm{T}=1$) $\mathbf{2}^{+}$state in ${ }^{10} \mathrm{~B}$

Why? Contributes to $B(E 2)$ value, which have been used as precision tests of ab-initio calculations of the $A=10$ isospin triplet

A new technique n HELIOS .

Mass 10 triplet

Sean Kuvin et al. Phys. Rev. C 96, 041301(R) (2017)

- Status of Uncertainties:
- Width(7\%)
- Alpha-particle branching ratio (25\%)
- γ-decay branching ratio: (25\%)

Gyürky et al., EPJA 21(2), 355 (2004).
Tilley et al., Nuclear Physics A 745(3), 155 (2004)
McCutchan et al., Phys.Rev. C 86, 057306 (2012).

'Downstream' mode

- 10B beam (stable) at $10 \mathrm{MeV} / \mathrm{u}$
- Thin CH_{2} target
- 'All' recoils detected, including those following decay of the recoil
- Method allows multiple analysis techniques

Branch ratio

Challenging measurement.
Alpha branching ratio now better constrained after some 50 years ...
... a follow-up measurement with Gammasphere constrain E2 gamma branch

Isomer beams, studying ${ }^{19}$ F

Transfer reactions are highly selective in I transfer

How do the valence nucleons (single-particles) contribute to each state of this rotational band?

Cannot study via transfer on the $0+$ ground state of ${ }^{18} \mathrm{~F}$...

Isomer beams

${ }^{18} \mathrm{~F}$ has a 5^{+}isomeric state at around 1.1 MeV .

Probing high-j states via low-I transfer.

Can populate every member of the rotational band in ${ }^{19 F}$ via $\mathrm{I}=0$ and 2 transfer.

Known states in ${ }^{19} \mathrm{~F}$

$$
\begin{array}{cc}
18 \mathrm{gF}^{(0+)}(\mathrm{d}, \mathrm{p})^{19} \mathrm{~F} & 18 \mathrm{mF} \mathrm{~F}^{(5+)}(\mathrm{d}, \mathrm{p})^{19} \mathrm{~F} \\
\mathrm{I}=0,2 & \mathrm{I}=0,2
\end{array}
$$

18m,gF(d,p)19F

> At HELIOS $18 \mathrm{~m}, \mathrm{gF}(\mathrm{d}, \mathrm{p})^{19} \mathrm{~F}$ $14 \mathrm{MeV} / \mathrm{u}$ $18 \mathrm{mF} / 18 \mathrm{gF}=0.11$
(11/2+ at higher ex)

19F, well understood

Excellent agreement with shell-model calculations (perhaps not surprisingly).

Powerful technique, many future possibilities ${ }^{26} \mathrm{Al}$, ${ }^{34} \mathrm{Cl}$, etc)

HELIOS going forwards

New 6-sided Si array, new digital DAQ (based on Gammashpere/Gretina/GRETA digitizers)

The Argonne In-flight Radioactive Ion Separator (AIRIS), improved in-flight beams

CARIBU beams,

e.g., ${ }^{134} \mathrm{Te}(d, p),{ }^{144,146 \mathrm{Ba}(d, d), \ldots}$

Tritium target, and so on.

AIRIS

Primary beam from ATLAS, a few to $20 \mathrm{MeV} / \mathrm{u}$, <few p $\mu \mathrm{A}$

AIRIS beams, 2018

- Weak cross-sec. measurements - astro / fusion
- Pairing
- Single-particle structure
- Possibly fusion-evap. with e.g. ${ }^{38} \mathrm{Ca},{ }^{42} \mathrm{Ti},{ }^{56} \mathrm{Ni}$ beams

ISS @ HIE-ISOLDE

$10 \mathrm{MeV} / \mathrm{u}$ beams opens up the possibility of a major direct-reaction program at ISOLDE ... ISS being developed

Schematic courtesy of Ian Burrows, STFC Daresbury

Early physics opportunities

$\mathrm{N}=127$ isotones below Pb

- Terra incognita. Below Pb , around $N=126$, very little known (limited knowledge on masses, decays).
- Evolution of single-particle states has not been explored in nuclei around ${ }^{208} \mathrm{~Pb}$ as these require radioactive ion beams.
- Data on 2^{+}and 3^{-}in even nuclei allows us to make some assumptions.
- Few / no theoretical studies on single-particle excitations.

Early physics opportunities

The ${ }^{206} \mathrm{Hg}(d, p)$ reaction at $10 \mathrm{MeV} / \mathrm{u}$ using

the ISOL Solenoidal Spectrometer (ISS)

Why (close to) $10 \mathrm{MeV} / \mathrm{u}$?

- Cross sections
- Angular momentum matching
- Angular distributions

Why ISS?

Resolution

- Charged-particle spectroscopy with <100keV Q-value resolution using thin targets

Efficiency

- Limited only by geometrical acceptance, not intrinsic efficiency of the detectors.

Direct probe of excited states

- Does not require coincident γ-rays deexciting the states (\therefore no concerns with isomers*, ground state, states not connected by γ-ray decay, etc).

Beam energy ($\mathrm{MeV} / \mathrm{u}$)

In collaboration with ANL

For potential 2018 experiments, ${ }^{28} \mathrm{Mg}(\mathrm{d}, \mathrm{p})$ and ${ }^{206} \mathrm{Hg}(\mathrm{d}, \mathrm{p})$, the HELIOS digital DAQ and Si array will be shipped to CERN in $\underline{2018}$

Shorter 'test' Si-array to be shipped in spring/summer for stable beam tests.
ISOLDE, December 3, 2017

SOLARIS at NSCL/FRIB

SOLARIS

Will operate in dual modes, like the ISS.

SOLARIS

Website and white paper available shortly (email me if interested). Anyone is welcome to join us.

SOLARIS White Paper

Summary

Solenoidal spectrometers are a valuable tool for studying direct reactions in inverse kinematics with Q-value good resolution

- 'Simplicity'
- Efficiency
- Versatility
- Resolution

Demonstrated with a ~ 10-year program with HELIOS at ATLAS
... BUT, the beams are king

- AIRIS upgrade at ATLAS, CARIBU beams ...
... ISS at HIE-ISOLDE and SOLARIS at FRIB (ReA)

