HELIOS: New Results and Future Developments

Benjamin P. Kay, Physics Division, Argonne National Laboratory ISOLDE Workshop and Users Meeting, December 2017

HELIOS: a new approach to studying transfer reactions in inverse kinematics*

(and potential for the use of a HELIOS-like spectrometer at HIE-ISOLDE)

Benjamin P. Kay The University of York

ISOLDE Workshop and Users meeting 8-10 December 2010

*This work is supported by the US Department of Energy, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-04ER41320, NSF Grant No. PHY-02-16783, and the UK Science and Technology Facilities Council

Inverse kinematics, HELIOS Direct reactions with RI beams HELIOS at the ATLAS facility

Recent highlights Inelastic scattering, Isomer beams

Upgrades, ISS and SOLARIS Better hardware: HELIOS's new siblings

Transfer reactions

- An essential probe of nuclear structure
- Energies, angular momentum, overlaps
- (High-resolution detectors developed accordingly)
- Direct reactions, well understood models
- Highly selective
- (Over 50-60 years experience)
- Count rates Beams, nA-µA

- <u>systems</u>
 - Few doubly-magic systems studied
 - Limited to changes of ~12 neutrons/protons excess
 - Poor overlap with nuclei involved in astrophysical processes

Direct reactions with RI beams

<u>10 MeV/u (5-20 MeV/u), >104 pps</u>

- single-particles states, E_(ex,spe), *I*-values,
 spectroscopic factors, e.g., (*d*,*p*), ...
- pair correlations, e.g., (p,t), (t,p),
 (³He,p), ...
- Collective properties via, e.g, (p,p'),
 (d,d'), (α,α'), ...

Kinematics: normal vs inverse

Excellent Si arrays have been developed, with high angular granularity, large acceptance, and (often) coincident gamma-ray detection, e.g., MUST2 (GANIL), T-REX (ISOLDE), SHARC (TRIUMF), ORRUBA (ORNL, elsewhere), TIARA (GANIL, Texas A&M), etc.

Inverse-kinematics challenges:

- Particle identification, ΔE-E techniques more challenging at low energies
- Strong energy dependence with respect to laboratory angle
- Kinematic compression at forward c.m. angles (in fact nearly all angles)
- Typically leading to poor resolution (100s of keV)
- ... and beams a few to 10⁶ orders of magnitude weaker (than stable beams)

Transport through a solenoidal field

$$E_{\rm cm} = E_{\rm lab} + \frac{m}{2}V_{\rm cm}^2 - \frac{mV_{\rm cm} z}{T_{\rm cyc}}$$

And the cyclotron period gives provides particle ID.

HELIOS (it works)

ATLAS, <u>http://www.anl.gov/phy/</u>

ATLAS, http://www.anl.gov/phy/

ATLAS (today and near future)

- Low energy beams for trap measurements
- State-of-the-art instruments

*upcoming instruments / capabilities

ATLAS, e.g. beams (2015)

From the report on ATLAS at the Low Energy Community Meeting 2016, Notre Dame, G. Savard

54 unique beams 37% resulting in a RIB on target

- Lowell, CMU, Manchester, ...

Recent highlights

<u>Goal</u>: Improve long standing uncertainties in the α-decay branch of the second (T=1) 2⁺ state in ¹⁰B

Why? Contributes to B(E2) value, which have been used as precision **tests of ab-initio calculations** of the A = 10 isospin triplet

A new technique n HELIOS ...

10C	11C	12C
19.308 S	20.364 Μ	STABLE
8: 100.00%	ε: 100.00%	98.93%
9B 0.54 KeV 2α: 100.00% P: 100.00%	10B STABLE 19.9%	11B STABLE 80.1%
8Be	9Be	10Be
5.57 eV	STABLE	1.51E+6 Υ
α: 100.00%	100.%	β-: 100.00%

Sean Kuvin et al. Phys. Rev. C 96, 041301(R) (2017)

Mass 10 triplet

Sean Kuvin et al. Phys. Rev. C 96, 041301(R) (2017)

'Downstream' mode

- ¹⁰B beam (stable) at 10 MeV/u
- Thin CH₂ target
- 'All' recoils detected, including those following decay of the recoil
- Method allows multiple analysis techniques

Branch ratio

Sean Kuvin et al. Phys. Rev. C 96, 041301(R) (2017)

Challenging measurement. Alpha branching ratio now better constrained after some 50 years ...

... a follow-up measurement with Gammasphere constrain E2 gamma branch

Isomer beams, studying ¹⁹F

Transfer reactions are highly selective in *I* transfer

How do the valence nucleons (single-particles) contribute to each state of this rotational band?

Cannot study via transfer on the 0+ ground state of ¹⁸F ...

Eexc [MeV]

Isomer beams

¹⁸F has a 5⁺ isomeric state at around 1.1 MeV.

Probing high-j states via low-l transfer.

Can populate every member of the rotational band in ¹⁹F via I=0 and 2 transfer.

D. Santiago-Gonzalez et al. (2017)

18m,gF(d,p)19F

Production ²H(¹⁷O,¹⁸F)n 15 MeV/u ~5×10⁵ pps 18mF/18gF=0.58

D. Santiago-Gonzalez et al. (2017)

¹⁹F, well understood

D. Santiago-Gonzalez et al. (2017)

Excellent agreement with shell-model calculations (perhaps not surprisingly).

Powerful technique, many future possibilities (²⁶Al, ³⁴Cl, etc)

HELIOS going forwards

New 6-sided Si array, new digital DAQ (based on Gammashpere/Gretina/GRETA digitizers)

The Argonne In-flight Radioactive Ion Separator (AIRIS), improved in-flight beams

CARIBU beams, e.g., ¹³⁴Te(*d*,*p*), ^{144,146}Ba(*d*,*d*), ...

Tritium target, and so on.

[Tritium-target tests, Kuvin, Wuosmaa (2017)]

Energy

Total Energy (MeV)

See e.g. http://www.anl.gov/phy/group/argonne-flight-radioactive-ion-separator-airis

AIRIS beams, 2018

See e.g. http://www.anl.gov/phy/group/argonne-flight-radioactive-ion-separator-airis

ISS @ HIE-ISOLDE

Early physics opportunities

N = 127 isotones below Pb

- *Terra incognita*. Below Pb, around N = 126, *very little known* (limited knowledge on masses, decays).
- *Evolution of single-particle states* has *not been explored* in nuclei around ²⁰⁸Pb as these ____ require *radioactive ion beams*.

			==
	_	_	
			_
2			

Early physics opportunities

The ²⁰⁶Hg(*d*,*p*) reaction at 10 MeV/u using the ISOL Solenoidal Spectrometer (ISS)

Why (close to) 10 MeV/u?

- Cross sections
- Angular momentum matching
- Angular distributions

Why ISS?

Resolution

Charged-particle spectroscopy with <100-

keV Q-value resolution using thin targets

Efficiency

 Limited only by geometrical acceptance, not intrinsic efficiency of the detectors.

Direct probe of excited states

 Does not require coincident γ-rays deexciting the states (∴ no concerns with isomers*, ground state, states not connected by γ-ray decay, etc).

*Isomers prevalent in the region around Pb

Cross sections estimated using DWBA code Ptolemy using standard parameterizations.

In collaboration with ANL

ISOLDE, December 3, 2017

For potential 2018 experiments, ²⁸Mg(d,p) and ²⁰⁶Hg(d,p), the **HELIOS digital DAQ and Si array** will be shipped to CERN in 2018

Shorter 'test' Si-array to be shipped in spring/summer for stable beam tests.

SOLARIS at NSCL/FRIB

*Estimated, <u>http://www.anl.gov/phy/group/argonne-flight-radioactive-ion-separator-airis</u>

Will operate in dual modes, like the ISS.

http://www.anl.gov/phy/group/solaris

SOLARIS

Website and white paper available shortly (email me if interested). Anyone is welcome to join us.

http://www.anl.gov/phy/group/solaris

SOLARIS White Paper

<u>Solenoidal spectrometers are a valuable tool for studying direct reactions in</u> inverse kinematics with Q-value good resolution

- 'Simplicity'
- Efficiency
- Versatility
- Resolution

Demonstrated with a ~10-year program with HELIOS at ATLAS

- ... BUT, the beams are king
 - AIRIS upgrade at ATLAS, CARIBU beams ...

... ISS at HIE-ISOLDE and SOLARIS at FRIB (ReA)

