RILIS - Status and Developments 2017

ISOLDE Workshop and User’s Meeting

Katerina Chrysalidis

CERN, Johannes Gutenberg-Universität Mainz

On behalf of the RILIS team
The RILIS team 2017

Valentin Fedosseev
Section leader EN-STI-LP

Bruce Marsh
Staff member EN-STI-LP

Camilo Granados
CERN fellow since Apr. 2017

Pierre Larmonier
VIA fellow since Aug. 2016

Shane Gary Wilkins
CERN fellow since Oct. 2017

Katerina Chrysaidis, PhD student since Oct. 2016

Support from PNPI: Dima Fedorov, Pavel Molkov, Maxim Seliverstov

Support from Mainz: Reinhard Heinke, Dominik Studer
A quick reminder

- RILIS: Resonance Ionization Laser Ion Source
- Coupled to surface ion source
- Use intrinsic properties (energy levels) of atom
- ‘Fingerprint’ specific for each element
- Ionization of elements with high (non surface ionizable) ionization potentials
- Enhancement of selectivity (laser ionization vs surface ionization)
RILIS Layout

RILIS laser room

Ti:Sa

Ti:Sa

Ti:Sa intra cavity doubled

F.C.U.

MSS Dye

Sirah Credo Dye

Sirah Credo Dye

F.C.U.

Pi Nd:YAG

Pi Nd:YAG

CB Nd:YVO₄

EW Nd:YAG

Restricted area

Dipole mass separator

Hot cavity + transfer line

Extraction electrode

Total laser beam path ~20 m

Faraday cup

To the experimental hall

F.C.U. : Frequency conversion unit

Prism

Mirror

Telescope

4
Lasers currently used at RILIS

• Dye lasers
 • 2x Credo from Sirah (linewidth ~8GHz)
 • MSS dye laser (linewidth up to 30GHz)
Lasers currently used at RILIS

- **Ti:Sa lasers**
 - 2x **NEW** Z-cavities from Mainz → convenient for intra-cavity doubling (10W pump beam for up to 1.5W of blue with BIBO)
 - 1 standard Z-cavity, „old“ design
 - Linewidth ~5GHz
 - Possibility to exchange 1 cavity with grating Ti:Sa for spectroscopy (linewidth ~1-2GHz)
Lasers currently used at RILIS

- Frequency-doubled DPSS lasers (532nm)
 - 1x Blaze (40W) for non resonant ionization
 - New laser was supposed to be delivered April 2017 → will (hopefully) arrive February 2018
 - 2x Photonics (60W) for Ti:Sa pumping
 - Laser failure: overheating of 1 laser head due to stopped cooling (spare was used for continued operation)
 - Some issues with chillers: 1 pump replacement, 1 needs to be send for refurbishment
 - 1x Edgewave (100W) for dye laser pumping NEW

- IS400-2-G
 - 10 kHz (9 ns), 100 W @ 532 nm
 - Simple operation; better dye laser efficiency and beam quality
 - Easy to transport to ion source (Blaze backup)
 - Objective assessment of degradation of beam quality
 - Better compatibility with commercial dye lasers

- TEM 00, $M^2 = 1.1$
 - Circular, Gaussian beam
Some statistics from the on-line period

• **20** different elements (on-line operation, in-source spectr., TISD): In, Mg, Mn, Al, Bi, Cd, Se, Sm, Ni, Dy, Nd, Ga, Li, Hg, Cu, Mo, Sc, Ti, Si, Te

• **21** separate on-line runs (not included: development)

• **95** days of (on-call) operation (not included: set up & development time)

> **50%** of ISOLDE beams in 2017
Laser ionization scheme development

→ Mostly „parasitic“ development in between or during runs
→ Effort towards more 2-step and Ti:Sa based schemes for reduced maintenance
Beam development

Scandium

Ionization scheme developed in Mainz was tested
First, long-awaited, on-line yields of Sc measured
"Sc beams now available at ISOLDE!"

6 changes in 4 days!
Ti → Sc → Dy → Sc → Se → Dy → Ni
Beam development

Tellurium: Scheme used first time for yield tests \(\rightarrow\) can now be provided for users

![Tellurium Energy Levels Diagram]

Molybdenum: Scheme used on-line for first time in combination with molecular break up (see talk by J. Balloff)

![Molybdenum Energy Levels Diagram]
Other activities: work at ISOLDE Off-Line 1 – VAD(L)IS

Continued developments on VAD(L)IS ion source (off-line and on-line)

→ Simulations with VSim by Y. Martinez Palenzuela for better extraction of laser ionized particles

T. Day Goodacre et al., NIM B 376, 39 (2016)
Other activities: work at ISOLDE Off-Line 1 – VAD(L)IS

- New design with variable extraction voltage improves laser ion extraction
- Demonstrated off-line with Ga
- Demonstrated on-line (last week) with Mg: **factor 3 extraction efficiency improvement** when voltage was adjusted!

Credit: Y. Martinez Palenzuela
Other activities: work at ISOLDE Off-Line 1 – Laser installation

• Laser installation for Ga tests: Edgewave pump laser + dye laser (2-step scheme)

• Inconvenient: requires delay line for pump beam & set up of (very old) dye laser

• Laser installation in Off-Line 1 has been dismantled
 → to be replaced with Ti:Sa laser set up for LIST development in 2018
 → Convenient scheme for Sm requires only 1 Ti:Sa laser + pump
Other activities: Ti:Sa laser set up in LARIS lab

• LARIS converted temporarily into negative ion source test facility for target group
• Master thesis work of David Leimbach (poster yesterday)
• Ti:Sa laser set up for off-line photo detachment tests of iodine
• Set up & tests are happening this week
Other activities: Towards (really) narrow band RILIS operation

- Efforts towards high resolution spectroscopy
- Aim: Doppler-free two-photon excitation in-source
- Demonstrated successfully at RISIKO Mainz off-line separator for Rb

\[(\omega_1 + \omega_D) + (\omega_1 - \omega_D) = 2\omega_1\]

- FWHM = 72.8 MHz
 - Outer peaks 68 MHz apart, but \(2\rightarrow1\) transition weakest one, so more likely width is around <52 MHz (\(2\rightarrow2\) also weak compared to \(2\rightarrow3,4\))

- FWHM = 69 MHz
 - Outer peaks 39 MHz apart
Other activities: Towards (really) narrow band RILIS operation

- Efforts towards high resolution spectroscopy
- Aim: Doppler-free two-photon excitation in-source
- **Problem:** Current laser set up does not allow for linewidths < 800MHz

Solution 1:
Use seeded Ti:Sa ring cavity
- New fiber has been put in place between RILIS and CRIS labs
- Minituarized design of ring cavity, developed in Jyväskylä and Mainz
- Use M²-laser for seeding ring cavity in RILIS
Other activities: Towards (really) narrow band RILIS operation

- Efforts towards high resolution spectroscopy
- Aim: Doppler-free two-photon excitation in-source
- **Problem:** Current laser set up does not allow for linewidths < 800MHz

Solution 2:
Use Pulsed Dye Amplifier (PDA)
- Two dye cells for amplification
- Test set up in CRIS lab
- Old Edgewave laser for pumping
- Amplification of Matisse CW laser
Other activities: Off-Line2 & MEDICIS

• New laser installations

→ Off-line 2:
 • Testbench for laser scheme ionization development
 • Tests for molecular break up in the cooler
 • Continued tests for VAD(L)IS & LIST

→ MEDICIS:
 • Beginning of installation of Laser Ion Source
 • First things first: Transform the available room into a lab
 • Start purchase of lasers and optics for equipping the lab
Conclusion

• 4 new schemes (Mo, Se, Ti, Sm)

• 2 new beams (Sc, Te)

• On-going ion source developments for better RILIS efficiency and suppression of contaminants (VADLIS & LIST)

• New approaches to in-source high-resolution spectroscopy
 → first tests done in Mainz
 → new lasers for RILIS in collaboration with CRIS & Mainz

• New laser installations planned for Off-Line 2 and MEDICIS
Thank you for your attention!